This documentation is automatically generated by online-judge-tools/verification-helper
#include "Src/GeometryR2/CircumscribedCircle.hpp"
#pragma once
#include "./Circle.hpp"
#include "./Segment.hpp"
#include "./Bisector/PerpendicularBisector.hpp"
#include "./CrossPoint/LineAndLine.hpp"
#include "./Distance/PointAndPoint.hpp"
#include <optional>
namespace zawa {
namespace geometryR2 {
std::optional<Circle> CircumscribedCircle(const Point& p0, const Point& p1, const Point& p2) {
if (Zero(Cross(p1 - p0, p2 - p0))) return std::nullopt;
const Point c = CrossPoint(
PerpendicularBisector(Segment{p0, p1}),
PerpendicularBisector(Segment{p0, p2})
);
const Real r = Distance(p0, c);
return Circle{c, r};
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/CircumscribedCircle.hpp"
#line 2 "Src/GeometryR2/Circle.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/GeometryR2/Real.hpp"
#line 4 "Src/GeometryR2/Real.hpp"
#include <cmath>
#include <cassert>
namespace zawa {
namespace geometryR2 {
using Real = long double;
namespace internal {
Real EPS{1e-12};
constexpr i32 negative{-1};
constexpr i32 zero{};
constexpr i32 positive{1};
} // namespace internal
Real& Eps() {
return internal::EPS;
}
i32 Sign(Real value) {
if (value < -Eps()) return internal::negative;
if (value > Eps()) return internal::positive;
return internal::zero;
}
bool Zero(Real value) {
return Sign(value) == internal::zero;
}
bool Positive(Real value) {
return Sign(value) == internal::positive;
}
bool Negative(Real value) {
return Sign(value) == internal::negative;
}
bool Equal(Real a, Real b) {
return Zero(a - b);
}
bool Smaller(Real a, Real b) {
return Negative(a - b);
}
bool Bigger(Real a, Real b) {
return Positive(a - b);
}
Real Square(Real value) {
return (Zero(value) ? value : value * value);
}
Real Sqrt(Real value) {
assert(!Negative(value));
return (Zero(value) ? value : sqrtl(value));
}
Real Abs(Real value) {
return (Negative(value) ? -value : value);
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Point.hpp"
#line 2 "Src/GeometryR2/Angle.hpp"
#line 4 "Src/GeometryR2/Angle.hpp"
#line 6 "Src/GeometryR2/Angle.hpp"
namespace zawa {
namespace geometryR2 {
constexpr Real PI{acosl(-1)};
constexpr Real TAU{static_cast<Real>(2) * PI};
constexpr Real ArcToRadian(Real arc) {
return (arc * PI) / static_cast<Real>(180);
}
constexpr Real RadianToArc(Real radian) {
return (radian * static_cast<Real>(180)) / PI;
}
} // namespace geometryR2
} // namespace zawa
#line 5 "Src/GeometryR2/Point.hpp"
#line 7 "Src/GeometryR2/Point.hpp"
#include <iostream>
#line 9 "Src/GeometryR2/Point.hpp"
namespace zawa {
namespace geometryR2 {
class Point {
private:
Real x_{}, y_{};
public:
/* constructor */
Point() = default;
Point(Real x, Real y) : x_{x}, y_{y} {}
/* getter, setter */
Real x() const {
return x_;
}
Real& x() {
return x_;
}
Real y() const {
return y_;
}
Real& y() {
return y_;
}
/* operator */
Point& operator+=(const Point& rhs) {
x_ += rhs.x();
y_ += rhs.y();
return *this;
}
friend Point operator+(const Point& lhs, const Point& rhs) {
return Point{lhs} += rhs;
}
Point operator+() const {
return *this;
}
Point& operator-=(const Point& rhs) {
x_ -= rhs.x();
y_ -= rhs.y();
return *this;
}
friend Point operator-(const Point& lhs, const Point& rhs) {
return Point{lhs} -= rhs;
}
Point operator-() const {
return Point{} - *this;
}
Point& operator*=(Real k) {
x_ *= k;
y_ *= k;
return *this;
}
friend Point operator*(Real k, const Point& p) {
return Point{p} *= k;
}
friend Point operator*(const Point& p, Real k) {
return Point{p} *= k;
}
Point& operator/=(Real k) {
assert(!Zero(k));
x_ /= k;
y_ /= k;
return *this;
}
friend Point operator/(Real k, const Point& p) {
return Point{p} /= k;
}
friend Point operator/(const Point& p, Real k) {
return Point{p} /= k;
}
friend bool operator==(const Point& lhs, const Point& rhs) {
return Equal(lhs.x(), rhs.x()) and Equal(lhs.y(), rhs.y());
}
friend bool operator!=(const Point& lhs, const Point& rhs) {
return !Equal(lhs.x(), rhs.x()) or !Equal(lhs.y(), rhs.y());
}
friend bool operator<(const Point& lhs, const Point& rhs) {
return Smaller(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and Smaller(lhs.y(), rhs.y()));
}
friend bool operator<=(const Point& lhs, const Point& rhs) {
return Smaller(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and (Smaller(lhs.y(), rhs.y()) or Equal(lhs.y(), rhs.y())));
}
friend bool operator>(const Point& lhs, const Point& rhs) {
return Bigger(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and Bigger(lhs.y(), rhs.y()));
}
friend bool operator>=(const Point& lhs, const Point& rhs) {
return Bigger(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and (Bigger(lhs.y(), rhs.y()) or Equal(lhs.y(), rhs.y())));
}
friend std::istream& operator>>(std::istream& is, Point& p) {
is >> p.x_ >> p.y_;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const Point& p) {
os << '(' << p.x_ << ',' << p.y_ << ')';
return os;
}
/* member function */
Real normSquare() const {
return Square(x_) + Square(y_);
}
Real norm() const {
return Sqrt(normSquare());
}
void normalize() {
assert((*this) != Point{});
(*this) /= norm();
}
Point normalized() const {
Point res{*this};
res.normalize();
return res;
}
Point rotated(Real radian) const {
return Point{
x_ * cosl(radian) - y_ * sinl(radian),
x_ * sinl(radian) + y_ * cosl(radian)
};
}
void rotate(Real radian) {
*this = rotated(radian);
}
Point rotatedByArc(Real arc) const {
return rotated(ArcToRadian(arc));
}
void rotateByArc(Real arc) {
*this = rotatedByArc(arc);
}
Real argument() const {
return (Negative(y_) ? TAU : static_cast<Real>(0)) + atan2l(y_, x_);
}
Real argumentByArc() const {
return RadianToArc(argument());
}
/* friend function */
friend Real Dot(const Point& lhs, const Point& rhs) {
return lhs.x() * rhs.x() + lhs.y() * rhs.y();
}
friend Real Cross(const Point& lhs, const Point& rhs) {
return lhs.x() * rhs.y() - lhs.y() * rhs.x();
}
friend Real Argument(const Point& lhs, const Point& rhs) {
return rhs.argument() - lhs.argument();
}
friend bool ArgComp(const Point& lhs, const Point& rhs) {
return Smaller(lhs.argument(), rhs.argument());
}
};
using Vector = Point;
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Distance/PointAndPoint.hpp"
#line 4 "Src/GeometryR2/Distance/PointAndPoint.hpp"
namespace zawa {
namespace geometryR2 {
Real Distance(const Point& p0, const Point& p1) {
return Point{p1 - p0}.norm();
}
Real DistanceSquare(const Point& p0, const Point& p1) {
return Point{p1 - p0}.normSquare();
}
} // namespace geometryR2
} // namespace zawa
#line 7 "Src/GeometryR2/Circle.hpp"
#line 9 "Src/GeometryR2/Circle.hpp"
#include <utility>
namespace zawa {
namespace geometryR2 {
class Circle {
private:
Point center_{};
Real radius_{};
public:
/* constructor */
Circle() = default;
Circle(const Point& center, Real radius) : center_{center}, radius_{radius} {
assert(!Negative(radius));
}
Circle(Real x, Real y, Real r) : center_{x, y}, radius_{r} {
assert(!Negative(r));
}
/* getter setter */
const Point& center() const {
return center_;
}
Point& center() {
return center_;
}
Real radius() const {
return radius_;
}
Real& radius() {
return radius_;
}
/* operator */
friend bool operator==(const Circle& lhs, const Circle& rhs) {
return lhs.center() == rhs.center() and Equal(lhs.radius(), rhs.radius());
}
friend bool operator!=(const Circle& lhs, const Circle& rhs) {
return lhs.center() != rhs.center() or !Equal(lhs.radius(), rhs.radius());
}
/* friend function */
friend u32 NumberCommonTangent(const Circle& c0, const Circle& c1) {
Real dist{DistanceSquare(c0.center(), c1.center())};
Real down{Square(Abs(c0.radius() - c1.radius()))};
if (Smaller(dist, down)) return 0;
if (Equal(dist, down)) return 1;
Real up{Square(c0.radius() + c1.radius())};
if (Smaller(dist, up)) return 2;
if (Equal(dist, up)) return 3;
return 4;
}
};
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Segment.hpp"
#line 2 "Src/GeometryR2/Relation.hpp"
#line 5 "Src/GeometryR2/Relation.hpp"
namespace zawa {
namespace geometryR2 {
enum RELATION {
// p0 -> p1 -> p2の順で直線上に並んでいる
ONLINE_FRONT = -2,
// (p1 - p0) -> (p2 - p0)が時計回りになっている
CLOCKWISE,
// p0 -> p2 -> p1の順で直線上に並んでいる
ON_SEGMENT,
// (p1 - p0) -> (p2 - p0)が反時計回りになっている
COUNTER_CLOCKWISE,
// p2 -> p0 -> p1、またはp1 -> p0 -> p2の順で直線上に並んでいる
ONLINE_BACK
};
RELATION Relation(const Point& p0, const Point& p1, const Point& p2) {
Point a{p1 - p0}, b{p2 - p0};
if (Positive(Cross(a, b))) return COUNTER_CLOCKWISE;
if (Negative(Cross(a, b))) return CLOCKWISE;
if (Negative(Dot(a, b))) return ONLINE_BACK;
if (Smaller(a.normSquare(), b.normSquare())) return ONLINE_FRONT;
return ON_SEGMENT;
};
} // namespace geometryR2
} // namespace zawa
#line 6 "Src/GeometryR2/Segment.hpp"
#include <algorithm>
#line 9 "Src/GeometryR2/Segment.hpp"
namespace zawa {
namespace geometryR2 {
class Segment {
private:
Point p0_{}, p1_{};
public:
/* constructor */
Segment() = default;
Segment(const Point& p0, const Point& p1) : p0_{p0}, p1_{p1} {}
Segment(Real x0, Real y0, Real x1, Real y1) : p0_{x0, y0}, p1_{x1, y1} {}
/* getter setter */
const Point& p0() const {
return p0_;
}
Point& p0() {
return p0_;
}
const Point& p1() const {
return p1_;
}
Point& p1() {
return p1_;
}
/* member function */
bool valid() const {
return p0_ != p1_;
}
bool straddle(const Segment& s) const {
return Relation(p0_, p1_, s.p0()) * Relation(p0_, p1_, s.p1()) <= 0;
}
Real length() const {
assert(valid());
return Distance(p0_, p1_);
}
Point midpoint() const {
assert(valid());
return p0_ + Vector{p1_ - p0_} / static_cast<Real>(2);
}
};
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Bisector/PerpendicularBisector.hpp"
#line 2 "Src/GeometryR2/Line.hpp"
#line 5 "Src/GeometryR2/Line.hpp"
#line 7 "Src/GeometryR2/Line.hpp"
namespace zawa {
namespace geometryR2 {
class Line {
private:
Point p0_{}, p1_{};
public:
/* constructor */
Line() = default;
Line(const Point& p0, const Point& p1) : p0_{p0}, p1_{p1} {}
// y = ax + b
Line(Real a, Real b) : p0_{static_cast<Real>(0), b}, p1_{static_cast<Real>(1), a + b} {}
/* getter, setter */
const Point& p0() const {
return p0_;
}
Point& p0() {
return p0_;
}
const Point& p1() const {
return p1_;
}
Point& p1() {
return p1_;
}
/* operator */
friend bool operator==(const Line& l0, const Line& l1) {
return Zero(Cross(l0.p1() - l0.p0(), l1.p1() - l1.p0())) and Zero(Cross(l0.p1() - l0.p0(), l1.p1() - l0.p0()));
}
friend bool operator!=(const Line& l0, const Line& l1) {
return !Zero(Cross(l0.p1() - l0.p0(), l1.p1() - l1.p0())) or !Zero(Cross(l0.p1() - l0.p0(), l1.p1() - l0.p0()));
}
/* member function */
bool valid() const {
return p0_ != p1_;
}
Vector slope() const {
assert(valid());
return Vector{p1() - p0()}.normalized();
}
};
} // namespace geometryR2
} // namespace zawa
#line 6 "Src/GeometryR2/Bisector/PerpendicularBisector.hpp"
#line 8 "Src/GeometryR2/Bisector/PerpendicularBisector.hpp"
namespace zawa {
namespace geometryR2 {
Line PerpendicularBisector(const Segment& s) {
assert(s.valid());
Point midpoint{s.midpoint()};
Vector vertical{Vector{s.p1() - s.p0()}.rotatedByArc(90)};
return Line{midpoint, midpoint + vertical};
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/CrossPoint/LineAndLine.hpp"
#line 2 "Src/GeometryR2/Intersect/LineAndLine.hpp"
#line 4 "Src/GeometryR2/Intersect/LineAndLine.hpp"
#line 6 "Src/GeometryR2/Intersect/LineAndLine.hpp"
namespace zawa {
namespace geometryR2 {
bool Intersect(const Line& l0, const Line& l1) {
assert(l0.valid());
assert(l1.valid());
if (!Zero(Cross(l0.p1() - l0.p0(), l1.p1() - l1.p0()))) {
return true;
}
else if (!Zero(Cross(l0.p1() - l0.p0(), l1.p0() - l0.p0()))) {
return false;
}
else {
return true;
}
}
} // namespace geometryR2
} // namespace
#line 6 "Src/GeometryR2/CrossPoint/LineAndLine.hpp"
#line 8 "Src/GeometryR2/CrossPoint/LineAndLine.hpp"
namespace zawa {
namespace geometryR2 {
Point CrossPoint(const Line& l0, const Line& l1) {
assert(l0.valid());
assert(l1.valid());
assert(Intersect(l0, l1));
assert(l0 != l1);
return l0.p0() + (l0.p1() - l0.p0()) *
(Cross(l1.p0() - l0.p0(), l1.p1() - l1.p0()) / Cross(l0.p1() - l0.p0(), l1.p1() - l1.p0()));
}
} // namespace geometryR2
} // namespace zawa
#line 8 "Src/GeometryR2/CircumscribedCircle.hpp"
#include <optional>
namespace zawa {
namespace geometryR2 {
std::optional<Circle> CircumscribedCircle(const Point& p0, const Point& p1, const Point& p2) {
if (Zero(Cross(p1 - p0, p2 - p0))) return std::nullopt;
const Point c = CrossPoint(
PerpendicularBisector(Segment{p0, p1}),
PerpendicularBisector(Segment{p0, p2})
);
const Real r = Distance(p0, c);
return Circle{c, r};
}
} // namespace geometryR2
} // namespace zawa