This documentation is automatically generated by online-judge-tools/verification-helper
#include "Src/Graph/Components/BlockCutTree.hpp"
Block Cut Treeを構築します。
ここでも簡単に補足しておくと
を適切につないだ木のことをBlock-Cut Treeといいます。
二重頂点連結成分分解のライブラリを単体で持ってないので、これで代用してください。
BlockCutTree() = default;
explicit BlockCutTree(const std::vector<std::vector<T>>& g);
隣接リストを与える。T
はstd::integral
を満たす必要がある。
inline usize size() const noexcept
BCTの頂点数を返します。
const std::vector<T>& operator[](usize i) const {
BCTの頂点 $i$ の隣接リストを返します。
enum class Type {
BLOCK,
CUT
};
Type type(usize i) const;
BCTの頂点 $i$ がBlockを表す頂点ならばBlockCutTree<T>::Type::BLOCK
を、関節点を表すならばBlockCutTree<T>::Type::CUT
を返します。
const std::vector<std::vector<T>>& blocks() const;
二重頂点連結成分全部を返します。
const std::vector<T>& block(usize i) const;
BCTの頂点 $i$ に対応する二重頂点連結成分を返します。
const std::vector<T>& cuts() const;
関節点を全部返します。
const T cut(usize i) const;
BCTの頂点 $i$ に対応する関節点を返します。
std::vector<T> vertices(usize i) const;
BCTの頂点 $i$ に対応する頂点の列を返します。これはconst参照では無くコピーされます
bool isCut(T v) const
元のグラフで $v$ が関節点だったかどうか判定します。
std::optional<usize> cutId(usize i) const;
元のグラフの頂点 $i$ が関節点だった場合、BCTの対応する頂点の番号を返します。そうでなければstd::nullopt
を返します。
#pragma once
#include <cassert>
#include <concepts>
#include <vector>
#include <optional>
#include "../../Template/TypeAlias.hpp"
namespace zawa {
template <std::integral T>
class BlockCutTree {
public:
BlockCutTree() = default;
explicit BlockCutTree(const std::vector<std::vector<T>>& g) : inv_(g.size()) {
const usize n = g.size();
std::vector<usize> low(n), ord(n), vs;
usize time = 1;
const T INVALID = static_cast<T>(-1);
auto dfs = [&](auto dfs, T v, T p) -> void {
low[v] = ord[v] = time++;
if (g[v].empty()) {
blocks_.push_back({T{v}});
return;
}
usize deg = 0;
bool cut = false;
for (T x : g[v]) {
if (ord[x]) {
low[v] = std::min(low[v], ord[x]);
}
else {
deg++;
dfs(dfs, x, v);
low[v] = std::min(low[v], low[x]);
if (low[x] >= ord[v]) {
std::vector<T> cur{v};
cut |= p != INVALID;
while (vs.size() and ord[vs.back()] >= ord[x]) {
cur.push_back(vs.back());
vs.pop_back();
}
blocks_.push_back(std::move(cur));
}
}
}
cut |= p == INVALID and deg >= 2;
if (cut) cuts_.push_back(v);
vs.push_back(v);
};
for (T i = 0 ; i < static_cast<T>(n) ; i++) if (!ord[i])
dfs(dfs, i, INVALID);
const usize m = blocks_.size(), k = cuts_.size();
for (usize i = 0 ; i < k ; i++) inv_[cuts_[i]] = m + i;
g_.resize(m + k);
for (usize i = 0 ; i < m ; i++) {
for (T v : blocks_[i]) if (inv_[v] >= m) {
g_[i].push_back(inv_[v]);
g_[inv_[v]].push_back(i);
}
}
}
inline usize size() const noexcept {
return g_.size();
}
const std::vector<T>& operator[](usize i) const {
assert(i < size());
return g_[i];
}
enum class Type {
BLOCK,
CUT
};
Type type(usize i) const {
assert(i < size());
return i < blocks_.size() ? Type::BLOCK : Type::CUT;
}
const std::vector<std::vector<T>>& blocks() const {
return blocks_;
}
const std::vector<T>& block(usize i) const {
assert(i < size() and type(i) == Type::BLOCK);
return blocks_[i];
}
const std::vector<T>& cuts() const {
return cuts_;
}
const T cut(usize i) const {
assert(i < size() and type(i) == Type::CUT);
return cuts_[i - blocks_.size()];
}
std::vector<T> vertices(usize i) const {
assert(i < size());
return i < blocks_.size() ?
blocks_[i] : std::vector<T>{cuts_[i - blocks_.size()]};
}
bool isCut(T v) const {
assert(v < static_cast<T>(inv_.size()));
return inv_[v] >= blocks_.size();
}
std::optional<usize> cutId(usize i) const {
assert(i < size());
return isCut(i) ? std::optional<usize>{inv_[i]} : std::nullopt;
}
private:
std::vector<std::vector<T>> blocks_;
std::vector<T> cuts_;
std::vector<std::vector<T>> g_;
std::vector<usize> inv_;
};
} // namespace zawa
#line 2 "Src/Graph/Components/BlockCutTree.hpp"
#include <cassert>
#include <concepts>
#include <vector>
#include <optional>
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 9 "Src/Graph/Components/BlockCutTree.hpp"
namespace zawa {
template <std::integral T>
class BlockCutTree {
public:
BlockCutTree() = default;
explicit BlockCutTree(const std::vector<std::vector<T>>& g) : inv_(g.size()) {
const usize n = g.size();
std::vector<usize> low(n), ord(n), vs;
usize time = 1;
const T INVALID = static_cast<T>(-1);
auto dfs = [&](auto dfs, T v, T p) -> void {
low[v] = ord[v] = time++;
if (g[v].empty()) {
blocks_.push_back({T{v}});
return;
}
usize deg = 0;
bool cut = false;
for (T x : g[v]) {
if (ord[x]) {
low[v] = std::min(low[v], ord[x]);
}
else {
deg++;
dfs(dfs, x, v);
low[v] = std::min(low[v], low[x]);
if (low[x] >= ord[v]) {
std::vector<T> cur{v};
cut |= p != INVALID;
while (vs.size() and ord[vs.back()] >= ord[x]) {
cur.push_back(vs.back());
vs.pop_back();
}
blocks_.push_back(std::move(cur));
}
}
}
cut |= p == INVALID and deg >= 2;
if (cut) cuts_.push_back(v);
vs.push_back(v);
};
for (T i = 0 ; i < static_cast<T>(n) ; i++) if (!ord[i])
dfs(dfs, i, INVALID);
const usize m = blocks_.size(), k = cuts_.size();
for (usize i = 0 ; i < k ; i++) inv_[cuts_[i]] = m + i;
g_.resize(m + k);
for (usize i = 0 ; i < m ; i++) {
for (T v : blocks_[i]) if (inv_[v] >= m) {
g_[i].push_back(inv_[v]);
g_[inv_[v]].push_back(i);
}
}
}
inline usize size() const noexcept {
return g_.size();
}
const std::vector<T>& operator[](usize i) const {
assert(i < size());
return g_[i];
}
enum class Type {
BLOCK,
CUT
};
Type type(usize i) const {
assert(i < size());
return i < blocks_.size() ? Type::BLOCK : Type::CUT;
}
const std::vector<std::vector<T>>& blocks() const {
return blocks_;
}
const std::vector<T>& block(usize i) const {
assert(i < size() and type(i) == Type::BLOCK);
return blocks_[i];
}
const std::vector<T>& cuts() const {
return cuts_;
}
const T cut(usize i) const {
assert(i < size() and type(i) == Type::CUT);
return cuts_[i - blocks_.size()];
}
std::vector<T> vertices(usize i) const {
assert(i < size());
return i < blocks_.size() ?
blocks_[i] : std::vector<T>{cuts_[i - blocks_.size()]};
}
bool isCut(T v) const {
assert(v < static_cast<T>(inv_.size()));
return inv_[v] >= blocks_.size();
}
std::optional<usize> cutId(usize i) const {
assert(i < size());
return isCut(i) ? std::optional<usize>{inv_[i]} : std::nullopt;
}
private:
std::vector<std::vector<T>> blocks_;
std::vector<T> cuts_;
std::vector<std::vector<T>> g_;
std::vector<usize> inv_;
};
} // namespace zawa