This documentation is automatically generated by online-judge-tools/verification-helper
#include "Src/Utility/AreaOfUnionOfRectangles.hpp"
#pragma once
#include "../Template/TypeAlias.hpp"
#include "../Algebra/Monoid/AdditionMonoid.hpp"
#include "../Algebra/Monoid/MinCountMonoid.hpp"
#include "../DataStructure/SegmentTree/LazySegmentTree.hpp"
#include <algorithm>
#include <cassert>
#include <type_traits>
#include <utility>
namespace zawa {
template <class T>
class Rectangle {
public:
Rectangle() = default;
Rectangle(T l, T d, T r, T u)
: l_{l}, d_{d}, r_{r}, u_{u} {
assert(l <= r);
assert(d <= u);
}
Rectangle(const std::pair<T, T>& ld, const std::pair<T, T>& ru)
: l_{ld.first}, d_{ld.second}, r_{ru.first}, u_{ru.second} {}
Rectangle(const std::pair<T, T>& ld, T w, T h)
: l_{ld.first}, d_{ld.second}, r_{l_ + w}, u_{d_ + h} {}
inline T left() const noexcept {
return l_;
}
inline T right() const noexcept {
return r_;
}
inline T down() const noexcept {
return d_;
}
inline T up() const noexcept {
return u_;
}
private:
// 左下、右上
T l_{}, d_{}, r_{}, u_{};
};
namespace internal {
struct AreaOfUnionOfRectanglesStructure {
using ValueMonoid = MinCountMonoid<i32, u64>;
using OperatorMonoid = AdditionMonoid<i32>;
static ValueMonoid::Element mapping(const ValueMonoid::Element& V, const OperatorMonoid::Element& R) {
return ValueMonoid::Element{ V.first + R, V.second };
}
static ValueMonoid::Element generate(u64 v) {
return ValueMonoid::Element{ 0, v };
}
};
} // namespace internal
template <class T, class InputIterator>
u64 AreaOfUnionOfRectangles(InputIterator first, InputIterator last) {
static_assert(std::is_same_v<std::remove_reference_t<decltype(*first)>, Rectangle<T>>, "*iterator 's type must be T");
usize n{static_cast<usize>(std::distance(first, last))};
if (n == 0u) return u64{};
std::vector<T> xs, ys;
xs.reserve(2u * n);
ys.reserve(2u * n);
for (auto it{first} ; it != last ; it++) {
xs.push_back(it->left());
xs.push_back(it->right());
ys.push_back(it->down());
ys.push_back(it->up());
}
std::sort(ys.begin(), ys.end());
ys.erase(std::unique(ys.begin(), ys.end()), ys.end());
std::sort(xs.begin(), xs.end());
xs.erase(std::unique(xs.begin(), xs.end()), xs.end());
std::vector<std::vector<std::pair<std::pair<u32, u32>, bool>>> event(xs.size());
for (auto it{first} ; it != last ; it++) {
u32 l{static_cast<u32>(std::distance(ys.begin(), std::lower_bound(ys.begin(), ys.end(), it->down())))};
u32 r{static_cast<u32>(std::distance(ys.begin(), std::lower_bound(ys.begin(), ys.end(), it->up())))};
event[static_cast<u32>(std::distance(xs.begin(), std::lower_bound(xs.begin(), xs.end(), it->left())))]
.emplace_back(std::pair<u32, u32>{ l, r }, true);
event[static_cast<u32>(std::distance(xs.begin(), std::lower_bound(xs.begin(), xs.end(), it->right())))]
.emplace_back(std::pair<u32, u32>{ l, r }, false);
}
using S = internal::AreaOfUnionOfRectanglesStructure;
std::vector<S::ValueMonoid::Element> init(ys.size() - 1);
for (usize i{} ; i + 1 < ys.size() ; i++) {
init[i] = S::generate(static_cast<u64>(ys[i + 1] - ys[i]));
}
u64 all{static_cast<u64>(ys.back() - ys.front())};
LazySegmentTree<S> seg{init};
u64 res{};
for (u32 x{} ; x < xs.size() ; x++) {
if (x >= 1u) {
auto [min, count]{seg.product(0, init.size())};
res += (all - (min == 0 ? count : u64{})) * (xs[x] - xs[x - 1]);
}
for (const auto& [lr, v] : event[x]) {
seg.operation(lr.first, lr.second, (v ? +1 : -1));
}
}
return res;
}
} // namespace zawa
#line 2 "Src/Utility/AreaOfUnionOfRectangles.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/Algebra/Monoid/AdditionMonoid.hpp"
namespace zawa {
template <class T>
struct AdditionMonoid {
using Element = T;
static T identity() noexcept {
return T{};
}
static T operation(const T& a, const T& b) noexcept {
return a + b;
}
};
} // namespace zawa
#line 2 "Src/Algebra/Monoid/MinCountMonoid.hpp"
#include <limits>
#include <utility>
namespace zawa {
template <class T, class U>
struct MinCountMonoid {
// min, countの順
using Element = std::pair<T, U>;
static Element identity() noexcept {
return { std::numeric_limits<T>::max(), U{} };
}
static Element operation(const Element& L, const Element& R) {
if (L.first < R.first) return L;
else if (L.first > R.first) return R;
else return Element{ L.first, L.second + R.second };
}
};
} // namespace
#line 2 "Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
#line 2 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept MonoidWithAction = requires {
requires Monoid<typename T::ValueMonoid>;
requires Monoid<typename T::OperatorMonoid>;
{ T::mapping(
std::declval<typename T::ValueMonoid::Element>(),
std::declval<typename T::OperatorMonoid::Element>()
) } -> std::same_as<typename T::ValueMonoid::Element>;
};
} // namespace concepts
} // namespace zawa
#line 5 "Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
#include <algorithm>
#include <bit>
#include <cassert>
#include <ranges>
#include <tuple>
#include <vector>
namespace zawa {
template <concepts::MonoidWithAction S>
class LazySegmentTree {
public:
using VM = S::ValueMonoid;
using V = typename VM::Element;
using OM = S::OperatorMonoid;
using O = typename OM::Element;
LazySegmentTree() = default;
explicit LazySegmentTree(usize n)
: m_n{n}, m_sz{1u << (std::bit_width(n))}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {}
explicit LazySegmentTree(const std::vector<V>& a)
: m_n{a.size()}, m_sz{1u << (std::bit_width(a.size()))}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {
std::ranges::copy(a, m_dat.begin() + inner_size());
for (usize i = inner_size() ; --i ; ) recalc(i);
}
[[nodiscard]] inline usize size() const noexcept {
return m_n;
}
[[nodiscard]] V operator[](usize i) {
assert(i < size());
return get(i, 1, 0, inner_size());
}
[[nodiscard]] V get(usize i) {
return (*this)[i];
}
[[nodiscard]] V product(usize l, usize r) {
assert(l <= r and r <= size());
return product(l, r, 1, 0, inner_size());
}
void operation(usize l, usize r, const O& o) {
assert(l <= r and r <= size());
return operation(l, r, o, 1, 0, inner_size());
}
void assign(usize i, const V& v) {
assert(i < size());
assign(i, v, 1, 0, inner_size());
}
void operation(usize i, const O& o) {
assert(i < size());
operation(i, o, 1, 0, inner_size());
}
private:
using NodeInfo = std::tuple<usize, usize, usize>;
public:
template <class F>
requires std::predicate<F, V>
usize maxRight(usize l, F f) {
assert(l <= size());
if (!f(VM::identity())) return l;
if (l == size()) return size();
std::vector<NodeInfo> ranges;
partition_range(l, size(), ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges) {
if (!f(VM::operation(prod, m_dat[nd]))) {
return maxRight(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return size();
}
template <class F>
requires std::predicate<F, V>
usize minLeft(usize r, F f) {
assert(r <= size());
if (!f(VM::identity())) return r;
if (!r) return 0;
std::vector<NodeInfo> ranges;
partition_range(0, r, ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges | std::views::reverse) {
if (!f(VM::operation(m_dat[nd], prod))) {
return minLeft(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return 0;
}
private:
usize m_n{}, m_sz{};
std::vector<V> m_dat;
std::vector<O> m_lazy;
inline usize inner_size() const noexcept {
return m_sz;
}
void recalc(usize nd) {
// assert(nd < inner_size());
m_dat[nd] = VM::operation(m_dat[nd << 1 | 0], m_dat[nd << 1 | 1]);
}
void propagate(usize nd) {
// assert(nd < inner_size());
for (usize ch : {nd << 1 | 0, nd << 1 | 1}) {
m_dat[ch] = S::mapping(m_dat[ch], m_lazy[nd]);
m_lazy[ch] = OM::operation(m_lazy[ch], m_lazy[nd]);
}
m_lazy[nd] = OM::identity();
}
V product(usize ql, usize qr, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return VM::identity();
if (ql <= nl and nr <= qr) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return VM::operation(
product(ql, qr, nd << 1 | 0, nl, m),
product(ql, qr, nd << 1 | 1, m, nr)
);
}
V get(usize i, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return i < m ? get(i, nd << 1 | 0, nl, m) : get(i, nd << 1 | 1, m, nr);
}
void operation(usize ql, usize qr, const O& o, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return;
if (ql <= nl and nr <= qr) {
m_dat[nd] = S::mapping(m_dat[nd], o);
m_lazy[nd] = OM::operation(m_lazy[nd], o);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
operation(ql, qr, o, nd << 1 | 0, nl, m);
operation(ql, qr, o, nd << 1 | 1, m, nr);
recalc(nd);
}
void operation(usize i, const O& o, usize nd, usize nl, usize nr) {
if (nl == i and i + 1 == nr) {
m_dat[nd] = S::mapping(m_dat[nd], o);
// 葉頂点なので、lazyへのopは不要
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? operation(i, o, nd << 1 | 0, nl, m) : operation(i, o, nd << 1 | 1, m, nr);
recalc(nd);
}
void assign(usize i, const V& v, usize nd, usize nl, usize nr) {
if (nl == i and i + 1 == nr) {
m_dat[nd] = v;
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? assign(i, v, nd << 1 | 0, nl, m) : assign(i, v, nd << 1 | 1, m, nr);
recalc(nd);
}
void partition_range(usize ql, usize qr, std::vector<NodeInfo>& res, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return;
if (ql <= nl and nr <= qr) {
res.emplace_back(nd, nl, nr);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
partition_range(ql, qr, res, nd << 1 | 0, nl, m);
partition_range(ql, qr, res, nd << 1 | 1, m, nr);
}
template <class F>
requires std::predicate<F, V>
usize maxRight(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nl;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(prod, m_dat[lch])) ?
maxRight(f, VM::operation(prod, m_dat[lch]), rch, m, nr) : maxRight(f, prod, lch, nl, m);
}
template <class F>
requires std::predicate<F, V>
usize minLeft(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nr;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(m_dat[rch], prod)) ?
minLeft(f, VM::operation(m_dat[rch], prod), lch, nl, m) : minLeft(f, prod, rch, m, nr);
}
};
} // namespace zawa
#line 7 "Src/Utility/AreaOfUnionOfRectangles.hpp"
#line 10 "Src/Utility/AreaOfUnionOfRectangles.hpp"
#include <type_traits>
#line 12 "Src/Utility/AreaOfUnionOfRectangles.hpp"
namespace zawa {
template <class T>
class Rectangle {
public:
Rectangle() = default;
Rectangle(T l, T d, T r, T u)
: l_{l}, d_{d}, r_{r}, u_{u} {
assert(l <= r);
assert(d <= u);
}
Rectangle(const std::pair<T, T>& ld, const std::pair<T, T>& ru)
: l_{ld.first}, d_{ld.second}, r_{ru.first}, u_{ru.second} {}
Rectangle(const std::pair<T, T>& ld, T w, T h)
: l_{ld.first}, d_{ld.second}, r_{l_ + w}, u_{d_ + h} {}
inline T left() const noexcept {
return l_;
}
inline T right() const noexcept {
return r_;
}
inline T down() const noexcept {
return d_;
}
inline T up() const noexcept {
return u_;
}
private:
// 左下、右上
T l_{}, d_{}, r_{}, u_{};
};
namespace internal {
struct AreaOfUnionOfRectanglesStructure {
using ValueMonoid = MinCountMonoid<i32, u64>;
using OperatorMonoid = AdditionMonoid<i32>;
static ValueMonoid::Element mapping(const ValueMonoid::Element& V, const OperatorMonoid::Element& R) {
return ValueMonoid::Element{ V.first + R, V.second };
}
static ValueMonoid::Element generate(u64 v) {
return ValueMonoid::Element{ 0, v };
}
};
} // namespace internal
template <class T, class InputIterator>
u64 AreaOfUnionOfRectangles(InputIterator first, InputIterator last) {
static_assert(std::is_same_v<std::remove_reference_t<decltype(*first)>, Rectangle<T>>, "*iterator 's type must be T");
usize n{static_cast<usize>(std::distance(first, last))};
if (n == 0u) return u64{};
std::vector<T> xs, ys;
xs.reserve(2u * n);
ys.reserve(2u * n);
for (auto it{first} ; it != last ; it++) {
xs.push_back(it->left());
xs.push_back(it->right());
ys.push_back(it->down());
ys.push_back(it->up());
}
std::sort(ys.begin(), ys.end());
ys.erase(std::unique(ys.begin(), ys.end()), ys.end());
std::sort(xs.begin(), xs.end());
xs.erase(std::unique(xs.begin(), xs.end()), xs.end());
std::vector<std::vector<std::pair<std::pair<u32, u32>, bool>>> event(xs.size());
for (auto it{first} ; it != last ; it++) {
u32 l{static_cast<u32>(std::distance(ys.begin(), std::lower_bound(ys.begin(), ys.end(), it->down())))};
u32 r{static_cast<u32>(std::distance(ys.begin(), std::lower_bound(ys.begin(), ys.end(), it->up())))};
event[static_cast<u32>(std::distance(xs.begin(), std::lower_bound(xs.begin(), xs.end(), it->left())))]
.emplace_back(std::pair<u32, u32>{ l, r }, true);
event[static_cast<u32>(std::distance(xs.begin(), std::lower_bound(xs.begin(), xs.end(), it->right())))]
.emplace_back(std::pair<u32, u32>{ l, r }, false);
}
using S = internal::AreaOfUnionOfRectanglesStructure;
std::vector<S::ValueMonoid::Element> init(ys.size() - 1);
for (usize i{} ; i + 1 < ys.size() ; i++) {
init[i] = S::generate(static_cast<u64>(ys[i + 1] - ys[i]));
}
u64 all{static_cast<u64>(ys.back() - ys.front())};
LazySegmentTree<S> seg{init};
u64 res{};
for (u32 x{} ; x < xs.size() ; x++) {
if (x >= 1u) {
auto [min, count]{seg.product(0, init.size())};
res += (all - (min == 0 ? count : u64{})) * (xs[x] - xs[x - 1]);
}
for (const auto& [lr, v] : event[x]) {
seg.operation(lr.first, lr.second, (v ? +1 : -1));
}
}
return res;
}
} // namespace zawa