This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/0478"
#include "../../Src/Template/IOSetting.hpp"
#include "../../Src/Algebra/Monoid/RollingHashMonoid.hpp"
#include "../../Src/DataStructure/SegmentTree/SegmentTree.hpp"
#include "../../Src/Graph/Tree/HeavyLightDecomposition.hpp"
#include <cassert>
#include <iostream>
#include <vector>
#include <unordered_set>
using namespace zawa;
RollingHashMonoidData::Value RollingHashMonoidData::base{
RollingHashMonoidData::randomValue(26)
};
int main() {
SetFastIO();
int N;
std::cin >> N;
std::vector<char> K(N);
for (auto& k : K) std::cin >> k;
std::vector<std::vector<int>> T(N);
for (int i{} ; i < N - 1 ; i++) {
int u, v;
std::cin >> u >> v;
u--; v--;
T[u].push_back(v);
T[v].push_back(u);
}
HeavyLightDecomposition hld{T};
std::vector<RollingHashMonoidData> init(N), tini(N);
for (int i{} ; i < N ; i++) {
init[hld[i]] = tini[N - hld[i] - 1] = RollingHashMonoidData{K[i]};
}
SegmentTree<RollingHashMonoid> seg{init}, ges{tini};
int Q;
std::cin >> Q;
std::unordered_set<RollingHashMonoidData::Value> set;
while (Q--) {
int t;
std::cin >> t;
if (t == 1) {
int s, t;
std::cin >> s >> t;
s--; t--;
RollingHashMonoidData res{};
for (auto [u, v] : hld(s, t)) {
u = hld[u];
v = hld[v];
if (u <= v) res = RollingHashMonoid::operation(res, seg.product(u, v + 1));
else res = RollingHashMonoid::operation(res, ges.product(N - u - 1, N - v));
}
set.insert(res.hash);
std::cout << set.size() << '\n';
}
else if (t == 2) {
int k;
char c;
std::cin >> k >> c;
k--;
seg.assign(hld[k], RollingHashMonoidData{c});
ges.assign(N - hld[k] - 1, RollingHashMonoidData{c});
}
else {
assert(false);
}
}
}
#line 1 "Test/AOJ/0478.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/0478"
#line 2 "Src/Template/IOSetting.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 4 "Src/Template/IOSetting.hpp"
#include <iostream>
#include <iomanip>
namespace zawa {
void SetFastIO() {
std::cin.tie(nullptr)->sync_with_stdio(false);
}
void SetPrecision(u32 dig) {
std::cout << std::fixed << std::setprecision(dig);
}
} // namespace zawa
#line 2 "Src/Algebra/Monoid/RollingHashMonoid.hpp"
#line 2 "Src/Number/Mersenne61ModInt.hpp"
#line 4 "Src/Number/Mersenne61ModInt.hpp"
namespace zawa {
// @reference: https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
class Mersenne61ModInt {
public:
using Value = u64;
private:
static constexpr Value MOD{(1ull << 61) - 1}; // == MASK61
static constexpr Value MASK30{(1ull << 30) - 1};
static constexpr Value MASK31{(1ull << 31) - 1};
Value v_{};
public:
constexpr Mersenne61ModInt() {}
static constexpr Value Mod() noexcept {
return MOD;
}
static constexpr Value Modulo(const Value& v) noexcept {
Value res{(v >> 61) + (v & MOD)};
res = (res >= MOD ? res - MOD : res);
return res;
}
static constexpr Value UnsafeMul(const Value& a, const Value& b) noexcept {
Value fa{a >> 31}, fb{b >> 31};
Value ba{a & MASK31}, bb{b & MASK31};
Value mid{fa * bb + fb * ba};
return Value{2}*fa*fb + (mid >> 30) + ((mid & MASK30) << 31) + ba*bb;
}
static constexpr Value Mul(const Value& a, const Value& b) noexcept {
return Modulo(UnsafeMul(a, b));
}
};
};
#line 5 "Src/Algebra/Monoid/RollingHashMonoid.hpp"
#include <random>
#include <type_traits>
namespace zawa {
struct RollingHashMonoidData {
using Value = Mersenne61ModInt::Value;
using Size = usize;
static Value base;
Value hash{}, pow{1};
usize len{};
constexpr RollingHashMonoidData() = default;
constexpr RollingHashMonoidData(Value h, Value p, usize l) : hash{h}, pow{p}, len{l} {}
template <class T>
constexpr RollingHashMonoidData(const T& v)
: hash{static_cast<Value>(v)}, pow{base}, len{1} {}
// RollingHashMonoidData(const RollingHashMonoidData& data)
// : hash{data.hash}, pow{data.pow}, len{data.len} {}
static Value randomValue(const Value& sigma) {
return std::mt19937{std::random_device{}()}() % (Mersenne61ModInt::Mod() - sigma) + sigma + 1;
}
friend constexpr bool operator==(const RollingHashMonoidData& lhs, const RollingHashMonoidData& rhs) {
return lhs.hash == rhs.hash and lhs.len == rhs.len;
}
friend constexpr bool operator!=(const RollingHashMonoidData& lhs, const RollingHashMonoidData& rhs) {
return lhs.hash != rhs.hash or lhs.len != rhs.len;
}
};
struct RollingHashMonoid {
using Modulo = Mersenne61ModInt;
using Element = RollingHashMonoidData;
static constexpr Element identity() noexcept {
return Element{};
}
static constexpr Element operation(const Element& lhs, const Element& rhs) noexcept {
return Element{
Modulo::Modulo(Modulo::UnsafeMul(lhs.hash, rhs.pow) + rhs.hash),
Modulo::Mul(lhs.pow, rhs.pow),
lhs.len + rhs.len
};
}
};
} // namespace zawa
#line 2 "Src/DataStructure/SegmentTree/SegmentTree.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 5 "Src/DataStructure/SegmentTree/SegmentTree.hpp"
#include <vector>
#include <cassert>
#include <functional>
#line 10 "Src/DataStructure/SegmentTree/SegmentTree.hpp"
#include <ostream>
namespace zawa {
template <concepts::Monoid Monoid>
class SegmentTree {
public:
using VM = Monoid;
using V = typename VM::Element;
using OM = Monoid;
using O = typename OM::Element;
SegmentTree() = default;
explicit SegmentTree(usize n) : m_n{ n }, m_dat(n << 1, VM::identity()) {}
explicit SegmentTree(const std::vector<V>& dat) : m_n{ dat.size() }, m_dat(dat.size() << 1, VM::identity()) {
for (usize i{} ; i < m_n ; i++) {
m_dat[i + m_n] = dat[i];
}
for (usize i{m_n} ; i-- ; i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
[[nodiscard]] inline usize size() const noexcept {
return m_n;
}
[[nodiscard]] V get(usize i) const {
assert(i < size());
return m_dat[i + m_n];
}
[[nodiscard]] V operator[](usize i) const {
assert(i < size());
return m_dat[i + m_n];
}
void operation(usize i, const O& value) {
assert(i < size());
i += size();
m_dat[i] = OM::operation(m_dat[i], value);
while (i = parent(i), i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
void assign(usize i, const V& value) {
assert(i < size());
i += size();
m_dat[i] = value;
while (i = parent(i), i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
[[nodiscard]] V product(u32 l, u32 r) const {
assert(l <= r and r <= size());
V L{ VM::identity() }, R{ VM::identity() };
for (l += size(), r += size() ; l < r ; l = parent(l), r = parent(r)) {
if (l & 1) {
L = VM::operation(L, m_dat[l++]);
}
if (r & 1) {
R = VM::operation(m_dat[--r], R);
}
}
return VM::operation(L, R);
}
template <class Function>
[[nodiscard]] usize maxRight(usize l, const Function& f) {
assert(l < size());
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
assert(f(VM::identity()));
usize res{l}, width{1};
V prod{ VM::identity() };
// 現在の見ている頂点の幅をwidthで持つ
// 境界がある頂点を含む部分木の根を探す
// (折り返す時は必要以上の幅を持つ根になるが、widthを持っているのでオーバーしない)
for (l += size() ; res + width <= size() ; l = parent(l), width <<= 1) if (l & 1) {
if (not f(VM::operation(prod, m_dat[l]))) break;
res += width;
prod = VM::operation(prod, m_dat[l++]);
}
// 根から下って、境界を発見する
while (l = left(l), width >>= 1) {
if (res + width <= size() and f(VM::operation(prod, m_dat[l]))) {
res += width;
prod = VM::operation(prod, m_dat[l++]);
}
}
return res;
}
template <class Function>
[[nodiscard]] usize minLeft(usize r, const Function& f) const {
assert(r <= size());
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
assert(f(VM::identity()));
usize res{r}, width{1};
V prod{ VM::identity() };
for (r += size() ; res >= width ; r = parent(r), width <<= 1) if (r & 1) {
if (not f(VM::operation(m_dat[r - 1], prod))) break;
res -= width;
prod = VM::operation(prod, m_dat[--r]);
}
while (r = left(r), width >>= 1) {
if (res >= width and f(VM::operation(m_dat[r - 1], prod))) {
res -= width;
prod = VM::operation(m_dat[--r], prod);
}
}
return res;
}
friend std::ostream& operator<<(std::ostream& os, const SegmentTree& st) {
for (usize i{1} ; i < 2 * st.size() ; i++) {
os << st.m_dat[i] << (i + 1 == 2 * st.size() ? "" : " ");
}
return os;
}
private:
constexpr u32 left(u32 v) const {
return v << 1;
}
constexpr u32 right(u32 v) const {
return v << 1 | 1;
}
constexpr u32 parent(u32 v) const {
return v >> 1;
}
usize m_n;
std::vector<V> m_dat;
};
} // namespace zawa
#line 2 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
#line 4 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
#include <algorithm>
#line 7 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
#include <cmath>
#include <limits>
#include <utility>
#line 11 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
namespace zawa {
template <class V>
class HeavyLightDecomposition {
public:
static constexpr V Invalid() noexcept {
return INVALID;
}
HeavyLightDecomposition() = default;
HeavyLightDecomposition(std::vector<std::vector<V>> T, V root = 0u)
: n_{T.size()}, par_(n_), top_(n_), idx_(n_),
inv_(n_), size_(n_, usize{1}), dep_(n_) {
auto dfs1{[&](auto dfs, V v, V p, usize d) -> usize {
par_[v] = p;
dep_[v] = d;
if (p != INVALID) {
for (u32 i{} ; i + 1 < T[v].size() ; i++) if (T[v][i] == p) {
std::swap(T[v][i], T[v].back());
break;
}
assert(T[v].back() == p);
T[v].pop_back();
}
for (V x : T[v]) {
size_[v] += dfs(dfs, x, v, d + 1);
}
for (u32 i{1} ; i < T[v].size() ; i++) if (size_[T[v][0]] < size_[T[v][i]]) {
std::swap(T[v][0], T[v][i]);
}
return size_[v];
}};
auto dfs2{[&](auto dfs, V v, V idx, V top) -> V {
idx_[v] = idx++;
inv_[idx_[v]] = v;
top_[v] = top;
if (T[v].size()) {
idx = dfs(dfs, T[v][0], idx, top);
for (u32 i{1} ; i < T[v].size() ; i++) {
idx = dfs(dfs, T[v][i], idx, T[v][i]);
}
}
return idx;
}};
dfs1(dfs1, root, INVALID, 0u);
dfs2(dfs2, root, 0u, root);
}
inline usize size() const noexcept {
return n_;
}
usize size(V v) const noexcept {
assert(v < (V)size());
return size_[v];
}
usize depth(V v) const noexcept {
assert(v < (V)size());
return dep_[v];
}
V parent(V v) const noexcept {
assert(v < (V)size());
return par_[v];
}
V index(V v) const noexcept {
assert(v < (V)size());
return idx_[v];
}
V operator[](V v) const noexcept {
assert(v < (V)size());
return idx_[v];
}
std::vector<std::pair<V, V>> decomp(V s, V t) const {
assert(s < (V)size());
assert(t < (V)size());
std::vector<std::pair<V, V>> res, ser;
while (top_[s] != top_[t]) {
if (dep_[top_[s]] >= dep_[top_[t]]) {
res.emplace_back(s, top_[s]);
s = top_[s];
if (par_[s] != INVALID) s = par_[s];
}
else {
ser.emplace_back(top_[t], t);
t = top_[t];
if (par_[t] != INVALID) t = par_[t];
}
}
res.emplace_back(s, t);
std::reverse(ser.begin(), ser.end());
res.insert(res.end(), ser.begin(), ser.end());
return res;
}
std::vector<std::pair<V, V>> operator()(V s, V t) const {
return decomp(s, t);
}
V lca(V u, V v) const {
assert(u < (V)size());
assert(v < (V)size());
while (top_[u] != top_[v]) {
if (dep_[top_[u]] >= dep_[top_[v]]) {
u = top_[u];
if (par_[u] != INVALID) u = par_[u];
}
else {
v = top_[v];
if (par_[v] != INVALID) v = par_[v];
}
}
return (dep_[u] <= dep_[v] ? u : v);
}
// pはvの祖先か?
bool isAncestor(V v, V p) {
assert(v < size());
assert(p < size());
if (dep_[v] < dep_[p]) return false;
while (v != INVALID and top_[v] != top_[p]) {
v = par_[top_[v]];
}
return v != INVALID;
}
V levelAncestor(V v, usize step) const {
assert(v < (V)size());
if (step > dep_[v]) return INVALID;
while (true) {
usize dist{dep_[v] - dep_[top_[v]]};
if (dist >= step) break;
step -= dist + 1;
v = par_[top_[v]];
}
step = (dep_[v] - dep_[top_[v]]) - step;
return inv_[idx_[top_[v]] + step];
}
V jump(V s, V t, usize step) const {
assert(s < (V)size());
assert(t < (V)size());
V uu{INVALID}, vv{INVALID};
usize d{};
for (auto [u, v] : decomp(s, t)) {
usize dist{std::max(dep_[u], dep_[v]) - std::min(dep_[u], dep_[v])};
if (dist >= step) {
uu = u;
vv = v;
d = dist;
break;
}
step -= dist + 1;
}
if (uu == INVALID) return INVALID;
if (dep_[uu] <= dep_[vv]) {
return inv_[idx_[uu] + step];
}
else {
return inv_[idx_[vv] + (d - step)];
}
}
usize distance(V s, V t) const {
assert(s < (V)size());
assert(t < (V)size());
usize res{};
for (auto [u, v] : decomp(s, t)) {
if (dep_[u] > dep_[v]) std::swap(u, v);
res += dep_[v] - dep_[u];
}
return res;
}
private:
static constexpr V INVALID{static_cast<V>(-1)};
usize n_{};
std::vector<V> par_{}, top_{}, idx_{}, inv_{};
std::vector<usize> size_{}, dep_{};
};
} // namespace zawa
#line 7 "Test/AOJ/0478.test.cpp"
#line 11 "Test/AOJ/0478.test.cpp"
#include <unordered_set>
using namespace zawa;
RollingHashMonoidData::Value RollingHashMonoidData::base{
RollingHashMonoidData::randomValue(26)
};
int main() {
SetFastIO();
int N;
std::cin >> N;
std::vector<char> K(N);
for (auto& k : K) std::cin >> k;
std::vector<std::vector<int>> T(N);
for (int i{} ; i < N - 1 ; i++) {
int u, v;
std::cin >> u >> v;
u--; v--;
T[u].push_back(v);
T[v].push_back(u);
}
HeavyLightDecomposition hld{T};
std::vector<RollingHashMonoidData> init(N), tini(N);
for (int i{} ; i < N ; i++) {
init[hld[i]] = tini[N - hld[i] - 1] = RollingHashMonoidData{K[i]};
}
SegmentTree<RollingHashMonoid> seg{init}, ges{tini};
int Q;
std::cin >> Q;
std::unordered_set<RollingHashMonoidData::Value> set;
while (Q--) {
int t;
std::cin >> t;
if (t == 1) {
int s, t;
std::cin >> s >> t;
s--; t--;
RollingHashMonoidData res{};
for (auto [u, v] : hld(s, t)) {
u = hld[u];
v = hld[v];
if (u <= v) res = RollingHashMonoid::operation(res, seg.product(u, v + 1));
else res = RollingHashMonoid::operation(res, ges.product(N - u - 1, N - v));
}
set.insert(res.hash);
std::cout << set.size() << '\n';
}
else if (t == 2) {
int k;
char c;
std::cin >> k >> c;
k--;
seg.assign(hld[k], RollingHashMonoidData{c});
ges.assign(N - hld[k] - 1, RollingHashMonoidData{c});
}
else {
assert(false);
}
}
}