This documentation is automatically generated by online-judge-tools/verification-helper
トタタ族の$i$個目の街の座標を$P_{i}$、ツテテ族の$j$個目の街の座標を$Q_{j}$とする。二点$p, q$を端点とする線分を$(p, q)$と表記する。
線分$(P_{1}, P_{2})$と線分$(Q_{1}, Q_{2})$が交わらない場合、この二本を引くことで最短の長さで目的を達成できる。
そうでないとき、$P_{1}, P_{2}$を$(Q_{1}, Q_{2})$と交わらないようにつなぐ、あるいは$Q_{1}, Q_{2}$を$(P_{1}, P_{2})$と交わらないようにつなぐ必要がある。
前者の場合、$Q_{1}, Q_{2}$をつなぐのに線分$(Q_{1}, Q_{2})$を利用すれば良い。後者の場合、$P_{1}, P_{2}$をつなぐのに線分$(P_{1}, P_{2})$を用いれば良い。
結局のところどちらか一方は丁度一本の線分で街1と街2をつなぐとして良いことがわかった。一本の線分でつなぐ方を固定するともう一方は$N$頂点$O(N^2)$辺の単一始点最短経路問題を解くことになる。辺重みがすべて正であるため、ダイクストラ法を用いれば良い。
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2334"
#define ERROR 0.000000001
#include "../../Src/Template/IOSetting.hpp"
#include "../../Src/GeometryR2/Point.hpp"
#include "../../Src/GeometryR2/Segment.hpp"
#include "../../Src/GeometryR2/Intersect/SegmentAndSegment.hpp"
#include <iostream>
#include <queue>
using namespace zawa;
using namespace geometryR2;
const Real INF{9e18};
Real solve(int N, const std::vector<Point>& P, const Segment& S) {
std::vector<std::vector<std::pair<int, Real>>> g(N);
for (int i{} ; i < N ; i++) {
for (int j{} ; j < N ; j++) {
if (i == j) continue;
Segment cur{P[i], P[j]};
if (Intersect(cur, S)) continue;
g[i].emplace_back(j, cur.length());
}
}
std::vector<Real> dist(N, INF);
using qt = std::pair<Real, int>;
std::priority_queue<qt, std::vector<qt>, std::greater<qt>> que;
dist[0] = 0;
que.emplace(dist[0], 0);
while (que.size()) {
auto [d, v]{que.top()};
que.pop();
if (Smaller(dist[v], d)) continue;
for (auto [x, w] : g[v]) {
if (Smaller(dist[v] + w, dist[x])) {
dist[x] = dist[v] + w;
que.emplace(dist[x], x);
}
}
}
return dist[1] + S.length();
}
int main() {
SetFastIO();
int NA, NB;
std::cin >> NA >> NB;
std::vector<Point> A(NA), B(NB);
for (auto& a : A) std::cin >> a;
for (auto& b : B) std::cin >> b;
Real ans{std::min(
solve(NA, A, Segment{B[0], B[1]}),
solve(NB, B, Segment{A[0], A[1]})
)};
SetPrecision(10);
if (Smaller(ans, INF)) {
std::cout << ans << '\n';
}
else {
std::cout << -1 << '\n';
}
}
#line 1 "Test/AOJ/2334.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2334"
#define ERROR 0.000000001
#line 2 "Src/Template/IOSetting.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 4 "Src/Template/IOSetting.hpp"
#include <iostream>
#include <iomanip>
namespace zawa {
void SetFastIO() {
std::cin.tie(nullptr)->sync_with_stdio(false);
}
void SetPrecision(u32 dig) {
std::cout << std::fixed << std::setprecision(dig);
}
} // namespace zawa
#line 2 "Src/GeometryR2/Point.hpp"
#line 2 "Src/GeometryR2/Real.hpp"
#line 4 "Src/GeometryR2/Real.hpp"
#include <cmath>
#include <cassert>
namespace zawa {
namespace geometryR2 {
using Real = long double;
namespace internal {
Real EPS{1e-12};
constexpr i32 negative{-1};
constexpr i32 zero{};
constexpr i32 positive{1};
} // namespace internal
Real& Eps() {
return internal::EPS;
}
i32 Sign(Real value) {
if (value < -Eps()) return internal::negative;
if (value > Eps()) return internal::positive;
return internal::zero;
}
bool Zero(Real value) {
return Sign(value) == internal::zero;
}
bool Positive(Real value) {
return Sign(value) == internal::positive;
}
bool Negative(Real value) {
return Sign(value) == internal::negative;
}
bool Equal(Real a, Real b) {
return Zero(a - b);
}
bool Smaller(Real a, Real b) {
return Negative(a - b);
}
bool Bigger(Real a, Real b) {
return Positive(a - b);
}
Real Square(Real value) {
return (Zero(value) ? value : value * value);
}
Real Sqrt(Real value) {
assert(!Negative(value));
return (Zero(value) ? value : sqrtl(value));
}
Real Abs(Real value) {
return (Negative(value) ? -value : value);
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Angle.hpp"
#line 4 "Src/GeometryR2/Angle.hpp"
#line 6 "Src/GeometryR2/Angle.hpp"
namespace zawa {
namespace geometryR2 {
constexpr Real PI{acosl(-1)};
constexpr Real TAU{static_cast<Real>(2) * PI};
constexpr Real ArcToRadian(Real arc) {
return (arc * PI) / static_cast<Real>(180);
}
constexpr Real RadianToArc(Real radian) {
return (radian * static_cast<Real>(180)) / PI;
}
} // namespace geometryR2
} // namespace zawa
#line 5 "Src/GeometryR2/Point.hpp"
#line 9 "Src/GeometryR2/Point.hpp"
namespace zawa {
namespace geometryR2 {
class Point {
private:
Real x_{}, y_{};
public:
/* constructor */
Point() = default;
Point(Real x, Real y) : x_{x}, y_{y} {}
/* getter, setter */
Real x() const {
return x_;
}
Real& x() {
return x_;
}
Real y() const {
return y_;
}
Real& y() {
return y_;
}
/* operator */
Point& operator+=(const Point& rhs) {
x_ += rhs.x();
y_ += rhs.y();
return *this;
}
friend Point operator+(const Point& lhs, const Point& rhs) {
return Point{lhs} += rhs;
}
Point operator+() const {
return *this;
}
Point& operator-=(const Point& rhs) {
x_ -= rhs.x();
y_ -= rhs.y();
return *this;
}
friend Point operator-(const Point& lhs, const Point& rhs) {
return Point{lhs} -= rhs;
}
Point operator-() const {
return Point{} - *this;
}
Point& operator*=(Real k) {
x_ *= k;
y_ *= k;
return *this;
}
friend Point operator*(Real k, const Point& p) {
return Point{p} *= k;
}
friend Point operator*(const Point& p, Real k) {
return Point{p} *= k;
}
Point& operator/=(Real k) {
assert(!Zero(k));
x_ /= k;
y_ /= k;
return *this;
}
friend Point operator/(Real k, const Point& p) {
return Point{p} /= k;
}
friend Point operator/(const Point& p, Real k) {
return Point{p} /= k;
}
friend bool operator==(const Point& lhs, const Point& rhs) {
return Equal(lhs.x(), rhs.x()) and Equal(lhs.y(), rhs.y());
}
friend bool operator!=(const Point& lhs, const Point& rhs) {
return !Equal(lhs.x(), rhs.x()) or !Equal(lhs.y(), rhs.y());
}
friend bool operator<(const Point& lhs, const Point& rhs) {
return Smaller(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and Smaller(lhs.y(), rhs.y()));
}
friend bool operator<=(const Point& lhs, const Point& rhs) {
return Smaller(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and (Smaller(lhs.y(), rhs.y()) or Equal(lhs.y(), rhs.y())));
}
friend bool operator>(const Point& lhs, const Point& rhs) {
return Bigger(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and Bigger(lhs.y(), rhs.y()));
}
friend bool operator>=(const Point& lhs, const Point& rhs) {
return Bigger(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and (Bigger(lhs.y(), rhs.y()) or Equal(lhs.y(), rhs.y())));
}
friend std::istream& operator>>(std::istream& is, Point& p) {
is >> p.x_ >> p.y_;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const Point& p) {
os << '(' << p.x_ << ',' << p.y_ << ')';
return os;
}
/* member function */
Real normSquare() const {
return Square(x_) + Square(y_);
}
Real norm() const {
return Sqrt(normSquare());
}
void normalize() {
assert((*this) != Point{});
(*this) /= norm();
}
Point normalized() const {
Point res{*this};
res.normalize();
return res;
}
Point rotated(Real radian) const {
return Point{
x_ * cosl(radian) - y_ * sinl(radian),
x_ * sinl(radian) + y_ * cosl(radian)
};
}
void rotate(Real radian) {
*this = rotated(radian);
}
Point rotatedByArc(Real arc) const {
return rotated(ArcToRadian(arc));
}
void rotateByArc(Real arc) {
*this = rotatedByArc(arc);
}
Real argument() const {
return (Negative(y_) ? TAU : static_cast<Real>(0)) + atan2l(y_, x_);
}
Real argumentByArc() const {
return RadianToArc(argument());
}
/* friend function */
friend Real Dot(const Point& lhs, const Point& rhs) {
return lhs.x() * rhs.x() + lhs.y() * rhs.y();
}
friend Real Cross(const Point& lhs, const Point& rhs) {
return lhs.x() * rhs.y() - lhs.y() * rhs.x();
}
friend Real Argument(const Point& lhs, const Point& rhs) {
return rhs.argument() - lhs.argument();
}
friend bool ArgComp(const Point& lhs, const Point& rhs) {
return Smaller(lhs.argument(), rhs.argument());
}
};
using Vector = Point;
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Segment.hpp"
#line 2 "Src/GeometryR2/Relation.hpp"
#line 5 "Src/GeometryR2/Relation.hpp"
namespace zawa {
namespace geometryR2 {
enum RELATION {
// p0 -> p1 -> p2の順で直線上に並んでいる
ONLINE_FRONT = -2,
// (p1 - p0) -> (p2 - p0)が時計回りになっている
CLOCKWISE,
// p0 -> p2 -> p1の順で直線上に並んでいる
ON_SEGMENT,
// (p1 - p0) -> (p2 - p0)が反時計回りになっている
COUNTER_CLOCKWISE,
// p2 -> p0 -> p1、またはp1 -> p0 -> p2の順で直線上に並んでいる
ONLINE_BACK
};
RELATION Relation(const Point& p0, const Point& p1, const Point& p2) {
Point a{p1 - p0}, b{p2 - p0};
if (Positive(Cross(a, b))) return COUNTER_CLOCKWISE;
if (Negative(Cross(a, b))) return CLOCKWISE;
if (Negative(Dot(a, b))) return ONLINE_BACK;
if (Smaller(a.normSquare(), b.normSquare())) return ONLINE_FRONT;
return ON_SEGMENT;
};
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Distance/PointAndPoint.hpp"
#line 4 "Src/GeometryR2/Distance/PointAndPoint.hpp"
namespace zawa {
namespace geometryR2 {
Real Distance(const Point& p0, const Point& p1) {
return Point{p1 - p0}.norm();
}
Real DistanceSquare(const Point& p0, const Point& p1) {
return Point{p1 - p0}.normSquare();
}
} // namespace geometryR2
} // namespace zawa
#line 6 "Src/GeometryR2/Segment.hpp"
#include <algorithm>
#line 9 "Src/GeometryR2/Segment.hpp"
namespace zawa {
namespace geometryR2 {
class Segment {
private:
Point p0_{}, p1_{};
public:
/* constructor */
Segment() = default;
Segment(const Point& p0, const Point& p1) : p0_{p0}, p1_{p1} {}
Segment(Real x0, Real y0, Real x1, Real y1) : p0_{x0, y0}, p1_{x1, y1} {}
/* getter setter */
const Point& p0() const {
return p0_;
}
Point& p0() {
return p0_;
}
const Point& p1() const {
return p1_;
}
Point& p1() {
return p1_;
}
/* member function */
bool valid() const {
return p0_ != p1_;
}
bool straddle(const Segment& s) const {
return Relation(p0_, p1_, s.p0()) * Relation(p0_, p1_, s.p1()) <= 0;
}
Real length() const {
assert(valid());
return Distance(p0_, p1_);
}
Point midpoint() const {
assert(valid());
return p0_ + Vector{p1_ - p0_} / static_cast<Real>(2);
}
};
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Intersect/SegmentAndSegment.hpp"
#line 4 "Src/GeometryR2/Intersect/SegmentAndSegment.hpp"
#line 6 "Src/GeometryR2/Intersect/SegmentAndSegment.hpp"
namespace zawa {
namespace geometryR2 {
bool Intersect(const Segment& s0, const Segment& s1) {
assert(s0.valid());
assert(s1.valid());
return s0.straddle(s1) and s1.straddle(s0);
}
} // namespace geometryR2
} // namespace zawa
#line 8 "Test/AOJ/2334.test.cpp"
#line 10 "Test/AOJ/2334.test.cpp"
#include <queue>
using namespace zawa;
using namespace geometryR2;
const Real INF{9e18};
Real solve(int N, const std::vector<Point>& P, const Segment& S) {
std::vector<std::vector<std::pair<int, Real>>> g(N);
for (int i{} ; i < N ; i++) {
for (int j{} ; j < N ; j++) {
if (i == j) continue;
Segment cur{P[i], P[j]};
if (Intersect(cur, S)) continue;
g[i].emplace_back(j, cur.length());
}
}
std::vector<Real> dist(N, INF);
using qt = std::pair<Real, int>;
std::priority_queue<qt, std::vector<qt>, std::greater<qt>> que;
dist[0] = 0;
que.emplace(dist[0], 0);
while (que.size()) {
auto [d, v]{que.top()};
que.pop();
if (Smaller(dist[v], d)) continue;
for (auto [x, w] : g[v]) {
if (Smaller(dist[v] + w, dist[x])) {
dist[x] = dist[v] + w;
que.emplace(dist[x], x);
}
}
}
return dist[1] + S.length();
}
int main() {
SetFastIO();
int NA, NB;
std::cin >> NA >> NB;
std::vector<Point> A(NA), B(NB);
for (auto& a : A) std::cin >> a;
for (auto& b : B) std::cin >> b;
Real ans{std::min(
solve(NA, A, Segment{B[0], B[1]}),
solve(NB, B, Segment{A[0], A[1]})
)};
SetPrecision(10);
if (Smaller(ans, INF)) {
std::cout << ans << '\n';
}
else {
std::cout << -1 << '\n';
}
}