This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2450"
#include "../../Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#include "../../Src/Graph/Tree/HeavyLightDecomposition.hpp"
#include "../../Src/Algebra/Monoid/SubarraySumMaxMonoid.hpp"
#include "../../Src/Algebra/Monoid/ReverseOrder.hpp"
#include <cassert>
#include <iostream>
#include <vector>
using namespace std;
using namespace zawa;
using M = SubarraySumMaxMonoid<long long>;
int main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
vector<int> A(N);
for (int i = 0 ; i < N ; i++) cin >> A[i];
vector<vector<int>> g(N);
for (int i = 0 ; i < N - 1 ; i++) {
int u, v;
cin >> u >> v;
u--; v--;
g[u].push_back(v);
g[v].push_back(u);
}
HeavyLightDecomposition hld{g};
vector<M::Element> init(N);
for (int i = 0 ; i < N ; i++) init[hld[i]] = M::convert(A[i]);
AssignmentSegmentTree<M> seg{init};
AssignmentSegmentTree<ReverseOrder<M>> ges{init};
while (Q--) {
int T;
cin >> T;
int a, b, c;
cin >> a >> b >> c;
a--; b--;
if (T == 1) {
for (auto [s, t] : hld(a, b)) {
s = hld[s];
t = hld[t];
if (s > t) swap(s, t);
seg.assign(s, t + 1, M::convert(c));
ges.assign(s, t + 1, M::convert(c));
}
}
else if (T == 2) {
M::Element pd = M::identity();
for (auto [s, t] : hld(a, b)) {
s = hld[s];
t = hld[t];
if (s <= t) pd = M::operation(pd, seg.product(s, t + 1));
else pd = M::operation(pd, ges.product(t, s + 1));
}
assert(pd);
cout << pd->ans() << '\n';
}
else assert(false);
}
}
#line 1 "Test/AOJ/2450.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2450"
#line 2 "Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 2 "Src/DataStructure/SegmentTree/SegmentTree.hpp"
#line 5 "Src/DataStructure/SegmentTree/SegmentTree.hpp"
#include <vector>
#include <cassert>
#include <functional>
#include <type_traits>
#include <ostream>
namespace zawa {
template <concepts::Monoid Monoid>
class SegmentTree {
public:
using VM = Monoid;
using V = typename VM::Element;
using OM = Monoid;
using O = typename OM::Element;
SegmentTree() = default;
explicit SegmentTree(usize n) : m_n{ n }, m_dat(n << 1, VM::identity()) {}
explicit SegmentTree(const std::vector<V>& dat) : m_n{ dat.size() }, m_dat(dat.size() << 1, VM::identity()) {
for (usize i{} ; i < m_n ; i++) {
m_dat[i + m_n] = dat[i];
}
for (usize i{m_n} ; i-- ; ) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
[[nodiscard]] inline usize size() const noexcept {
return m_n;
}
[[nodiscard]] V get(usize i) const {
assert(i < size());
return m_dat[i + m_n];
}
[[nodiscard]] V operator[](usize i) const {
assert(i < size());
return m_dat[i + m_n];
}
void operation(usize i, const O& value) {
assert(i < size());
i += size();
m_dat[i] = OM::operation(m_dat[i], value);
while (i = parent(i), i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
void assign(usize i, const V& value) {
assert(i < size());
i += size();
m_dat[i] = value;
while (i = parent(i), i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
[[nodiscard]] V product(u32 l, u32 r) const {
assert(l <= r and r <= size());
V L{ VM::identity() }, R{ VM::identity() };
for (l += size(), r += size() ; l < r ; l = parent(l), r = parent(r)) {
if (l & 1) {
L = VM::operation(L, m_dat[l++]);
}
if (r & 1) {
R = VM::operation(m_dat[--r], R);
}
}
return VM::operation(L, R);
}
template <class F>
requires std::predicate<F, V>
[[nodiscard]] usize maxRight(usize l, const F& f) {
assert(l < size());
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
assert(f(VM::identity()));
usize res{l}, width{1};
V prod{ VM::identity() };
// 現在の見ている頂点の幅をwidthで持つ
// 境界がある頂点を含む部分木の根を探す
// (折り返す時は必要以上の幅を持つ根になるが、widthを持っているのでオーバーしない)
for (l += size() ; res + width <= size() ; l = parent(l), width <<= 1) if (l & 1) {
if (not f(VM::operation(prod, m_dat[l]))) break;
res += width;
prod = VM::operation(prod, m_dat[l++]);
}
// 根から下って、境界を発見する
while (l = left(l), width >>= 1) {
if (res + width <= size() and f(VM::operation(prod, m_dat[l]))) {
res += width;
prod = VM::operation(prod, m_dat[l++]);
}
}
return res;
}
template <class F>
requires std::predicate<F, V>
[[nodiscard]] usize minLeft(usize r, const F& f) const {
assert(r <= size());
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
assert(f(VM::identity()));
usize res{r}, width{1};
V prod{ VM::identity() };
for (r += size() ; res >= width ; r = parent(r), width <<= 1) if (r & 1) {
if (not f(VM::operation(m_dat[r - 1], prod))) break;
res -= width;
prod = VM::operation(prod, m_dat[--r]);
}
while (r = left(r), width >>= 1) {
if (res >= width and f(VM::operation(m_dat[r - 1], prod))) {
res -= width;
prod = VM::operation(m_dat[--r], prod);
}
}
return res;
}
friend std::ostream& operator<<(std::ostream& os, const SegmentTree& st) {
for (usize i{1} ; i < 2 * st.size() ; i++) {
os << st.m_dat[i] << (i + 1 == 2 * st.size() ? "" : " ");
}
return os;
}
private:
constexpr u32 left(u32 v) const {
return v << 1;
}
constexpr u32 right(u32 v) const {
return v << 1 | 1;
}
constexpr u32 parent(u32 v) const {
return v >> 1;
}
usize m_n;
std::vector<V> m_dat;
};
} // namespace zawa
#line 6 "Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#line 9 "Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#include <set>
namespace zawa {
namespace concepts {
template <class T, class U>
concept Powerable = requires {
typename T::Element;
{ T::power(std::declval<typename T::Element>(), std::declval<U>()) }
-> std::same_as<typename T::Element>;
};
template <class T>
concept EqualCompare = requires(T a, T b) {
{ a == b } -> std::convertible_to<bool>;
};
template <class T>
concept FastPowerableMonoid = Monoid<T> and Powerable<T, u64>;
} // namespace concepts
template <concepts::Monoid Monoid>
class AssignmentSegmentTree {
public:
using VM = Monoid;
using V = typename VM::Element;
AssignmentSegmentTree() = default;
explicit AssignmentSegmentTree(usize n) : m_seg{n}, m_dat(n, VM::identity()), m_ls{} {
m_dat.shrink_to_fit();
assert(n);
m_ls.insert(0u);
m_ls.insert(n);
}
explicit AssignmentSegmentTree(std::vector<V> dat) : m_seg{}, m_dat{dat}, m_ls{} {
// dat: 区間の左端lにa_{l}^{r-l}, それ以外のiはidentity()にする -> セグ木にこれをのせる
// m_dat: 区間の左端lにa_{l}, それ以外のiはidentity()にする
m_dat.shrink_to_fit();
if constexpr (concepts::EqualCompare<V>) {
for (usize i{}, j{} ; i < m_dat.size() ; ) {
while (j < dat.size() and dat[i] == dat[j]) j++;
m_ls.insert(i);
dat[i] = power(m_dat[i], j - i);
for ( ; ++i < j ; dat[i] = m_dat[i] = VM::identity()) ;
}
}
else {
for (usize i{} ; i < m_dat.size() ; i++) m_ls.insert(i);
}
m_ls.insert(dat.size());
m_seg = decltype(m_seg){dat};
}
[[nodiscard]] inline usize size() const noexcept {
return m_dat.size();
}
[[nodiscard]] V product(usize l, usize r) const {
assert(l <= r and r <= size());
if (l == r) return VM::identity();
const auto second_l = m_ls.upper_bound(l);
const auto first_l = std::prev(second_l);
if (second_l != m_ls.end() and r <= *second_l) { // 一つの区間に含まれている
return power(m_dat[*first_l], r - l);
}
const auto last_l = std::prev(m_ls.upper_bound(r));
V res = VM::operation(
power(m_dat[*first_l], *second_l - l),
m_seg.product(*second_l, *last_l)
);
if (r == *last_l) return res;
return VM::operation(res, power(m_dat[*last_l], r - *last_l));
}
void assign(usize l, usize r, V v) {
assert(l <= r and r <= m_dat.size());
if (l == r) return;
// assert(*it_l < n);
auto it_l = std::prev(m_ls.upper_bound(l)), it_r = std::prev(m_ls.upper_bound(r));
if (*it_l < l) m_seg.assign(*it_l, power(m_dat[*it_l], l - *it_l));
m_seg.assign(l, power(v, r - l));
if (*it_r < r and r < m_dat.size()) {
m_dat[r] = m_dat[*it_r];
m_seg.assign(r, power(m_dat[r], *std::next(it_r) - r));
m_ls.insert(r);
}
m_dat[l] = v;
for (it_l++ ; *it_l < r ; it_l = m_ls.erase(it_l)) {
m_seg.assign(*it_l, VM::identity());
m_dat[*it_l] = VM::identity();
}
m_ls.insert(l);
}
private:
SegmentTree<VM> m_seg;
std::vector<V> m_dat;
std::set<usize> m_ls;
static V power(V v, u32 p) requires concepts::FastPowerableMonoid<VM> {
return VM::power(v, p);
}
static V power(V v, u32 p) {
V res{VM::identity()};
while (p) {
if (p & 1) res = VM::operation(res, v);
v = VM::operation(v, v);
p >>= 1;
}
return res;
}
};
} // namespace zawa
#line 2 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
#line 4 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
#include <algorithm>
#line 7 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
#include <cmath>
#include <limits>
#include <utility>
#line 11 "Src/Graph/Tree/HeavyLightDecomposition.hpp"
namespace zawa {
template <class V>
class HeavyLightDecomposition {
public:
static constexpr V Invalid() noexcept {
return INVALID;
}
HeavyLightDecomposition() = default;
HeavyLightDecomposition(std::vector<std::vector<V>> T, V root = 0u)
: n_{T.size()}, par_(n_), top_(n_), idx_(n_),
inv_(n_), size_(n_, usize{1}), dep_(n_) {
auto dfs1{[&](auto dfs, V v, V p, usize d) -> usize {
par_[v] = p;
dep_[v] = d;
if (p != INVALID) {
for (u32 i{} ; i + 1 < T[v].size() ; i++) if (T[v][i] == p) {
std::swap(T[v][i], T[v].back());
break;
}
assert(T[v].back() == p);
T[v].pop_back();
}
for (V x : T[v]) {
size_[v] += dfs(dfs, x, v, d + 1);
}
for (u32 i{1} ; i < T[v].size() ; i++) if (size_[T[v][0]] < size_[T[v][i]]) {
std::swap(T[v][0], T[v][i]);
}
return size_[v];
}};
auto dfs2{[&](auto dfs, V v, V idx, V top) -> V {
idx_[v] = idx++;
inv_[idx_[v]] = v;
top_[v] = top;
if (T[v].size()) {
idx = dfs(dfs, T[v][0], idx, top);
for (u32 i{1} ; i < T[v].size() ; i++) {
idx = dfs(dfs, T[v][i], idx, T[v][i]);
}
}
return idx;
}};
dfs1(dfs1, root, INVALID, 0u);
dfs2(dfs2, root, 0u, root);
}
inline usize size() const noexcept {
return n_;
}
usize size(V v) const noexcept {
assert(v < (V)size());
return size_[v];
}
usize depth(V v) const noexcept {
assert(v < (V)size());
return dep_[v];
}
V parent(V v) const noexcept {
assert(v < (V)size());
return par_[v];
}
V index(V v) const noexcept {
assert(v < (V)size());
return idx_[v];
}
V operator[](V v) const noexcept {
assert(v < (V)size());
return idx_[v];
}
std::vector<std::pair<V, V>> decomp(V s, V t) const {
assert(s < (V)size());
assert(t < (V)size());
std::vector<std::pair<V, V>> res, ser;
while (top_[s] != top_[t]) {
if (dep_[top_[s]] >= dep_[top_[t]]) {
res.emplace_back(s, top_[s]);
s = top_[s];
if (par_[s] != INVALID) s = par_[s];
}
else {
ser.emplace_back(top_[t], t);
t = top_[t];
if (par_[t] != INVALID) t = par_[t];
}
}
res.emplace_back(s, t);
std::reverse(ser.begin(), ser.end());
res.insert(res.end(), ser.begin(), ser.end());
return res;
}
std::vector<std::pair<V, V>> operator()(V s, V t) const {
return decomp(s, t);
}
V lca(V u, V v) const {
assert(u < (V)size());
assert(v < (V)size());
while (top_[u] != top_[v]) {
if (dep_[top_[u]] >= dep_[top_[v]]) {
u = top_[u];
if (par_[u] != INVALID) u = par_[u];
}
else {
v = top_[v];
if (par_[v] != INVALID) v = par_[v];
}
}
return (dep_[u] <= dep_[v] ? u : v);
}
// pはvの祖先か?
bool isAncestor(V v, V p) {
assert(v < size());
assert(p < size());
if (dep_[v] < dep_[p]) return false;
while (v != INVALID and top_[v] != top_[p]) {
v = par_[top_[v]];
}
return v != INVALID;
}
V levelAncestor(V v, usize step) const {
assert(v < (V)size());
if (step > dep_[v]) return INVALID;
while (true) {
usize dist{dep_[v] - dep_[top_[v]]};
if (dist >= step) break;
step -= dist + 1;
v = par_[top_[v]];
}
step = (dep_[v] - dep_[top_[v]]) - step;
return inv_[idx_[top_[v]] + step];
}
V jump(V s, V t, usize step) const {
assert(s < (V)size());
assert(t < (V)size());
V uu{INVALID}, vv{INVALID};
usize d{};
for (auto [u, v] : decomp(s, t)) {
usize dist{std::max(dep_[u], dep_[v]) - std::min(dep_[u], dep_[v])};
if (dist >= step) {
uu = u;
vv = v;
d = dist;
break;
}
step -= dist + 1;
}
if (uu == INVALID) return INVALID;
if (dep_[uu] <= dep_[vv]) {
return inv_[idx_[uu] + step];
}
else {
return inv_[idx_[vv] + (d - step)];
}
}
usize distance(V s, V t) const {
assert(s < (V)size());
assert(t < (V)size());
usize res{};
for (auto [u, v] : decomp(s, t)) {
if (dep_[u] > dep_[v]) std::swap(u, v);
res += dep_[v] - dep_[u];
}
return res;
}
private:
static constexpr V INVALID{static_cast<V>(-1)};
usize n_{};
std::vector<V> par_{}, top_{}, idx_{}, inv_{};
std::vector<usize> size_{}, dep_{};
};
} // namespace zawa
#line 2 "Src/Algebra/Monoid/SubarraySumMaxMonoid.hpp"
#line 5 "Src/Algebra/Monoid/SubarraySumMaxMonoid.hpp"
#include <optional>
namespace zawa {
template <std::totally_ordered T>
class SubarraySumMax {
public:
SubarraySumMax() = default;
explicit SubarraySumMax(T v) : m_ans{v}, m_sum{v}, m_pref{v}, m_suf{v}, m_entire{true} {}
SubarraySumMax(T ans, T sum, T pref, T suf, bool entire) : m_ans{ans}, m_sum{sum}, m_pref{pref}, m_suf{suf}, m_entire{entire} {}
inline T ans() const {
return m_ans;
}
inline T sum() const {
return m_sum;
}
inline T pref() const {
return m_pref;
}
inline T suf() const {
return m_suf;
}
inline bool entire() const {
return m_entire;
}
static SubarraySumMax<T> merge(const SubarraySumMax<T>& lhs, const SubarraySumMax<T>& rhs) {
T sum = lhs.sum() + rhs.sum();
T pref = std::max(lhs.pref(), lhs.sum() + rhs.pref());
T suf = std::max(rhs.suf(), lhs.suf() + rhs.sum());
T ans = std::max({lhs.ans(), rhs.ans(), lhs.suf() + rhs.pref(), sum});
bool entire = (ans == sum);
return {ans, sum, pref, suf, entire};
}
private:
T m_ans{}, m_sum{}, m_pref{}, m_suf{};
bool m_entire{};
};
template <std::totally_ordered T>
struct SubarraySumMaxMonoid {
using Element = std::optional<SubarraySumMax<T>>;
static Element identity() {
return std::nullopt;
}
static Element operation(const Element& L, const Element& R) {
if (!L) return R;
if (!R) return L;
return Element::value_type::merge(L.value(), R.value());
}
static Element convert(T v) {
return Element{v};
}
};
} // namespace zawa
#line 2 "Src/Algebra/Monoid/ReverseOrder.hpp"
#line 4 "Src/Algebra/Monoid/ReverseOrder.hpp"
namespace zawa {
template <concepts::Monoid M>
struct ReverseOrder {
using Element = M::Element;
static Element identity() {
return M::identity();
}
static Element operation(const Element& L, const Element& R) {
return M::operation(R, L);
}
};
} // namespace zawa
#line 7 "Test/AOJ/2450.test.cpp"
#line 9 "Test/AOJ/2450.test.cpp"
#include <iostream>
#line 11 "Test/AOJ/2450.test.cpp"
using namespace std;
using namespace zawa;
using M = SubarraySumMaxMonoid<long long>;
int main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int N, Q;
cin >> N >> Q;
vector<int> A(N);
for (int i = 0 ; i < N ; i++) cin >> A[i];
vector<vector<int>> g(N);
for (int i = 0 ; i < N - 1 ; i++) {
int u, v;
cin >> u >> v;
u--; v--;
g[u].push_back(v);
g[v].push_back(u);
}
HeavyLightDecomposition hld{g};
vector<M::Element> init(N);
for (int i = 0 ; i < N ; i++) init[hld[i]] = M::convert(A[i]);
AssignmentSegmentTree<M> seg{init};
AssignmentSegmentTree<ReverseOrder<M>> ges{init};
while (Q--) {
int T;
cin >> T;
int a, b, c;
cin >> a >> b >> c;
a--; b--;
if (T == 1) {
for (auto [s, t] : hld(a, b)) {
s = hld[s];
t = hld[t];
if (s > t) swap(s, t);
seg.assign(s, t + 1, M::convert(c));
ges.assign(s, t + 1, M::convert(c));
}
}
else if (T == 2) {
M::Element pd = M::identity();
for (auto [s, t] : hld(a, b)) {
s = hld[s];
t = hld[t];
if (s <= t) pd = M::operation(pd, seg.product(s, t + 1));
else pd = M::operation(pd, ges.product(t, s + 1));
}
assert(pd);
cout << pd->ans() << '\n';
}
else assert(false);
}
}