This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2827"
#define ERROR 0.001
#include "../../Src/GeometryR2/Angle.hpp"
#include "../../Src/GeometryR2/PointCloud.hpp"
#include "../../Src/GeometryR2/Polygon.hpp"
#include "../../Src/GeometryR2/ConvexHull.hpp"
#include "../../Src/GeometryR2/Distance/SegmentAndSegment.hpp"
#include "../../Src/GeometryR2/Contain/ConvexPolygonContainsPoint.hpp"
using namespace zawa::geometryR2;
#include <iostream>
#include <iomanip>
#include <vector>
#include <utility>
#include <queue>
int N, NV[100];
Real H[100], THETA, GAMMA;
Polygon P[100];
Point START, GOAL;
bool inner(const Polygon& p, const Polygon& q) {
for (int i = 0 ; i < std::ssize(p) ; i++) if (ConvexPolygonContainsPoint(q, p[i]) == OUTSIDE) return false;
return true;
}
Real Distance(const Polygon& p, const Polygon& q) {
if (inner(p, q) or inner(q, p)) return 0;
Real res = 1e18l;
for (int i = 0 ; i < std::ssize(p) ; i++) for (int j = 0 ; j < std::ssize(q) ; j++) {
res = std::min(res, Distance(Segment{p[i], p[i+1==std::ssize(p)?0:i+1]},
Segment{q[j], q[j+1==std::ssize(q)?0:j+1]}));
}
return res;
}
Real NaiveDistance(const Polygon& poly, const Point& p) {
if (ConvexPolygonContainsPoint(poly, p) != OUTSIDE) {
return 0;
}
else {
Real res = 1e18l;
for (int i = 0 ; i < std::ssize(poly) ; i++) {
res = std::min(res, Distance(p, Segment{poly[i], poly[i+1==std::ssize(poly)?0:i+1]}));
}
return res;
}
}
Real solve() {
std::vector<Polygon> hulls = [&]() {
std::vector<PointCloud> pcs(N);
std::vector<Polygon> res(N);
for (int i = 0 ; i < N ; i++) {
const Real shadow_len = H[i] * cosl(GAMMA) / sinl(GAMMA);
for (int j = 0 ; j < NV[i] ; j++) {
pcs[i].push_back(P[i][j]);
pcs[i].push_back(P[i][j] - shadow_len * Point{cosl(THETA), sinl(THETA)});
}
res[i] = ConvexHull<true>(pcs[i]);
assert(std::ssize(res[i]) >= 3);
res[i].normalForm();
}
return res;
}();
const int n = N + 2, st = N, go = N + 1;
std::vector g(n, std::vector<Real>(n));
for (int i = 0 ; i < N ; i++) {
const Real w = NaiveDistance(hulls[i], START);
g[st][i] = g[i][st] = w;
}
for (int i = 0 ; i < N ; i++) {
const Real w = NaiveDistance(hulls[i], GOAL);
g[go][i] = g[i][go] = w;
}
g[st][go] = g[go][st] = Distance(START, GOAL);
for (int i = 0 ; i < N ; i++) {
for (int j = i + 1 ; j < N ; j++) {
g[i][j] = g[j][i] = Distance(hulls[i], hulls[j]);
}
}
std::vector<Real> dist(n, 1e18l);
using qt = std::pair<Real, int>;
std::priority_queue<qt, std::vector<qt>, std::greater<qt>> que;
dist[st] = 0;
que.push({dist[st], st});
// for (int i = 0 ; i < n ; i++) {
// for (int j = 0 ; j < n ; j++) std::cout << g[i][j] << ' ';
// std::cout << std::endl;
// }
while (que.size()) {
auto [d, v] = que.top();
que.pop();
if (Bigger(d, dist[v])) continue;
for (int i = 0 ; i < n ; i++) if (Smaller(d + g[v][i], dist[i])) {
dist[i] = d + g[v][i];
que.push({dist[i], i});
}
}
return dist[go];
}
int main() {
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(5);
while (true) {
std::cin >> N;
if (N == 0) break;
for (int i = 0 ; i < N ; i++) {
std::cin >> NV[i] >> H[i];
Polygon p(NV[i]);
for (int j = 0 ; j < NV[i] ; j++) std::cin >> p[j].x() >> p[j].y();
P[i] = std::move(p);
}
std::cin >> THETA >> GAMMA;
THETA = ArcToRadian(THETA);
GAMMA = ArcToRadian(GAMMA);
std::cin >> START.x() >> START.y() >> GOAL.x() >> GOAL.y();
std::cout << solve() << '\n';
}
}
#line 1 "Test/AOJ/2827.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2827"
#define ERROR 0.001
#line 2 "Src/GeometryR2/Angle.hpp"
#line 2 "Src/GeometryR2/Real.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 4 "Src/GeometryR2/Real.hpp"
#include <cmath>
#include <cassert>
namespace zawa {
namespace geometryR2 {
using Real = long double;
namespace internal {
Real EPS{1e-12};
constexpr i32 negative{-1};
constexpr i32 zero{};
constexpr i32 positive{1};
} // namespace internal
Real& Eps() {
return internal::EPS;
}
i32 Sign(Real value) {
if (value < -Eps()) return internal::negative;
if (value > Eps()) return internal::positive;
return internal::zero;
}
bool Zero(Real value) {
return Sign(value) == internal::zero;
}
bool Positive(Real value) {
return Sign(value) == internal::positive;
}
bool Negative(Real value) {
return Sign(value) == internal::negative;
}
bool Equal(Real a, Real b) {
return Zero(a - b);
}
bool Smaller(Real a, Real b) {
return Negative(a - b);
}
bool Bigger(Real a, Real b) {
return Positive(a - b);
}
Real Square(Real value) {
return (Zero(value) ? value : value * value);
}
Real Sqrt(Real value) {
assert(!Negative(value));
return (Zero(value) ? value : sqrtl(value));
}
Real Abs(Real value) {
return (Negative(value) ? -value : value);
}
} // namespace geometryR2
} // namespace zawa
#line 4 "Src/GeometryR2/Angle.hpp"
#line 6 "Src/GeometryR2/Angle.hpp"
namespace zawa {
namespace geometryR2 {
constexpr Real PI{acosl(-1)};
constexpr Real TAU{static_cast<Real>(2) * PI};
constexpr Real ArcToRadian(Real arc) {
return (arc * PI) / static_cast<Real>(180);
}
constexpr Real RadianToArc(Real radian) {
return (radian * static_cast<Real>(180)) / PI;
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/PointCloud.hpp"
#line 2 "Src/GeometryR2/Point.hpp"
#line 5 "Src/GeometryR2/Point.hpp"
#line 7 "Src/GeometryR2/Point.hpp"
#include <iostream>
#line 9 "Src/GeometryR2/Point.hpp"
namespace zawa {
namespace geometryR2 {
class Point {
private:
Real x_{}, y_{};
public:
/* constructor */
Point() = default;
Point(Real x, Real y) : x_{x}, y_{y} {}
/* getter, setter */
Real x() const {
return x_;
}
Real& x() {
return x_;
}
Real y() const {
return y_;
}
Real& y() {
return y_;
}
/* operator */
Point& operator+=(const Point& rhs) {
x_ += rhs.x();
y_ += rhs.y();
return *this;
}
friend Point operator+(const Point& lhs, const Point& rhs) {
return Point{lhs} += rhs;
}
Point operator+() const {
return *this;
}
Point& operator-=(const Point& rhs) {
x_ -= rhs.x();
y_ -= rhs.y();
return *this;
}
friend Point operator-(const Point& lhs, const Point& rhs) {
return Point{lhs} -= rhs;
}
Point operator-() const {
return Point{} - *this;
}
Point& operator*=(Real k) {
x_ *= k;
y_ *= k;
return *this;
}
friend Point operator*(Real k, const Point& p) {
return Point{p} *= k;
}
friend Point operator*(const Point& p, Real k) {
return Point{p} *= k;
}
Point& operator/=(Real k) {
assert(!Zero(k));
x_ /= k;
y_ /= k;
return *this;
}
friend Point operator/(Real k, const Point& p) {
return Point{p} /= k;
}
friend Point operator/(const Point& p, Real k) {
return Point{p} /= k;
}
friend bool operator==(const Point& lhs, const Point& rhs) {
return Equal(lhs.x(), rhs.x()) and Equal(lhs.y(), rhs.y());
}
friend bool operator!=(const Point& lhs, const Point& rhs) {
return !Equal(lhs.x(), rhs.x()) or !Equal(lhs.y(), rhs.y());
}
friend bool operator<(const Point& lhs, const Point& rhs) {
return Smaller(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and Smaller(lhs.y(), rhs.y()));
}
friend bool operator<=(const Point& lhs, const Point& rhs) {
return Smaller(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and (Smaller(lhs.y(), rhs.y()) or Equal(lhs.y(), rhs.y())));
}
friend bool operator>(const Point& lhs, const Point& rhs) {
return Bigger(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and Bigger(lhs.y(), rhs.y()));
}
friend bool operator>=(const Point& lhs, const Point& rhs) {
return Bigger(lhs.x(), rhs.x()) or
(Equal(lhs.x(), rhs.x()) and (Bigger(lhs.y(), rhs.y()) or Equal(lhs.y(), rhs.y())));
}
friend std::istream& operator>>(std::istream& is, Point& p) {
is >> p.x_ >> p.y_;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const Point& p) {
os << '(' << p.x_ << ',' << p.y_ << ')';
return os;
}
/* member function */
Real normSquare() const {
return Square(x_) + Square(y_);
}
Real norm() const {
return Sqrt(normSquare());
}
void normalize() {
assert((*this) != Point{});
(*this) /= norm();
}
Point normalized() const {
Point res{*this};
res.normalize();
return res;
}
Point rotated(Real radian) const {
return Point{
x_ * cosl(radian) - y_ * sinl(radian),
x_ * sinl(radian) + y_ * cosl(radian)
};
}
void rotate(Real radian) {
*this = rotated(radian);
}
Point rotatedByArc(Real arc) const {
return rotated(ArcToRadian(arc));
}
void rotateByArc(Real arc) {
*this = rotatedByArc(arc);
}
Real argument() const {
return (Negative(y_) ? TAU : static_cast<Real>(0)) + atan2l(y_, x_);
}
Real argumentByArc() const {
return RadianToArc(argument());
}
/* friend function */
friend Real Dot(const Point& lhs, const Point& rhs) {
return lhs.x() * rhs.x() + lhs.y() * rhs.y();
}
friend Real Cross(const Point& lhs, const Point& rhs) {
return lhs.x() * rhs.y() - lhs.y() * rhs.x();
}
friend Real Argument(const Point& lhs, const Point& rhs) {
return rhs.argument() - lhs.argument();
}
friend bool ArgComp(const Point& lhs, const Point& rhs) {
return Smaller(lhs.argument(), rhs.argument());
}
};
using Vector = Point;
} // namespace geometryR2
} // namespace zawa
#line 4 "Src/GeometryR2/PointCloud.hpp"
#include <vector>
namespace zawa {
namespace geometryR2 {
using PointCloud = std::vector<Point>;
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Polygon.hpp"
#line 2 "Src/GeometryR2/Relation.hpp"
#line 5 "Src/GeometryR2/Relation.hpp"
namespace zawa {
namespace geometryR2 {
enum RELATION {
// p0 -> p1 -> p2の順で直線上に並んでいる
ONLINE_FRONT = -2,
// (p1 - p0) -> (p2 - p0)が時計回りになっている
CLOCKWISE,
// p0 -> p2 -> p1の順で直線上に並んでいる
ON_SEGMENT,
// (p1 - p0) -> (p2 - p0)が反時計回りになっている
COUNTER_CLOCKWISE,
// p2 -> p0 -> p1、またはp1 -> p0 -> p2の順で直線上に並んでいる
ONLINE_BACK
};
RELATION Relation(const Point& p0, const Point& p1, const Point& p2) {
Point a{p1 - p0}, b{p2 - p0};
if (Positive(Cross(a, b))) return COUNTER_CLOCKWISE;
if (Negative(Cross(a, b))) return CLOCKWISE;
if (Negative(Dot(a, b))) return ONLINE_BACK;
if (Smaller(a.normSquare(), b.normSquare())) return ONLINE_FRONT;
return ON_SEGMENT;
};
} // namespace geometryR2
} // namespace zawa
#line 7 "Src/GeometryR2/Polygon.hpp"
#include <algorithm>
#line 10 "Src/GeometryR2/Polygon.hpp"
#include <concepts>
#line 12 "Src/GeometryR2/Polygon.hpp"
namespace zawa {
namespace geometryR2 {
class Polygon {
private:
std::vector<Point> data_;
public:
/* member */
usize size() const {
return data_.size();
}
/* constructor */
Polygon() = default;
explicit Polygon(const std::vector<Point>& data) : data_{data} {}
explicit Polygon(usize n) : data_(n) {}
/* operator[] */
Point& operator[](usize i) {
assert(i < size());
return data_[i];
}
const Point& operator[](usize i) const {
assert(i < size());
return data_[i];
}
friend std::istream& operator>>(std::istream& is, Polygon& polygon) {
for (size_t i{} ; i < polygon.size() ; i++) {
is >> polygon[i];
}
return is;
}
friend std::ostream& operator<<(std::ostream& os, const Polygon& polygon) {
for (usize i{} ; i < polygon.size() ; i++) {
std::cout << polygon[i] << (i + 1 == polygon.size() ? "" : " ");
}
return os;
}
/* member function */
void orderRotate(usize i) {
assert(i < size());
std::rotate(data_.begin(), data_.begin() + i, data_.end());
}
void normalForm() {
auto index{std::distance(data_.begin(), std::min_element(data_.begin(), data_.end()))};
orderRotate(index);
}
Polygon normalFormed() const {
Polygon res{*this};
res.normalForm();
return res;
}
bool isConvex() const {
assert(size() >= static_cast<usize>(3));
for (usize i{} ; i < size() ; i++) {
if (Relation(data_[i], data_[i+1==size()?0:i+1], data_[i+2>=size()?i+2-size():i+2])
== CLOCKWISE) {
return false;
}
}
return true;
}
Real area() const {
if (std::ssize(data_) <= 2) return 0;
Real res{};
for (usize i{1} ; i < size() ; i++) {
res += Cross(data_[i] - data_[0], data_[i+1==size()?0:i+1] - data_[0]);
}
return res / static_cast<Real>(2);
}
void pushBack(const Point& p) {
data_.push_back(p);
}
void emplaceBack(Real x, Real y) {
data_.emplace_back(x, y);
}
void reserve(usize n) {
data_.reserve(n);
}
template <std::input_iterator RandomAccessIterator>
void insert(usize n, RandomAccessIterator first, RandomAccessIterator last) {
assert(n <= size());
data_.insert(std::next(data_.begin(), n), first, last);
}
};
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/ConvexHull.hpp"
#line 7 "Src/GeometryR2/ConvexHull.hpp"
#line 10 "Src/GeometryR2/ConvexHull.hpp"
#include <iterator>
#line 12 "Src/GeometryR2/ConvexHull.hpp"
namespace zawa {
namespace geometryR2 {
template <bool strictly>
Polygon ConvexHull(const PointCloud& p) {
PointCloud cp{p};
std::sort(cp.begin(), cp.end());
cp.erase(std::unique(cp.begin(), cp.end()), cp.end());
if (cp.size() <= 2u) {
return Polygon{cp};
}
PointCloud lower;
lower.reserve(p.size());
for (auto it{cp.begin()} ; it != cp.end() ; it++) {
lower.push_back(*it);
while (lower.size() >= 3u) {
if (Relation(lower[lower.size() - 3], lower[lower.size() - 2], lower[lower.size() - 1]) == COUNTER_CLOCKWISE) {
break;
}
if constexpr (!strictly) {
if (Relation(lower[lower.size() - 3], lower[lower.size() - 2], lower[lower.size() - 1]) == ONLINE_FRONT) {
break;
}
}
std::swap(lower[lower.size() - 2], lower[lower.size() - 1]);
lower.pop_back();
}
}
PointCloud upper;
upper.reserve(p.size());
for (auto it{cp.rbegin()} ; it != cp.rend() ; it++) {
upper.push_back(*it);
while (upper.size() >= 3u) {
if (Relation(upper[upper.size() - 3], upper[upper.size() - 2], upper[upper.size() - 1]) == COUNTER_CLOCKWISE) {
break;
}
if constexpr (!strictly) {
if (Relation(upper[upper.size() - 3], upper[upper.size() - 2], upper[upper.size() - 1]) == ONLINE_FRONT) {
break;
}
}
std::swap(upper[upper.size() - 2], upper[upper.size() - 1]);
upper.pop_back();
}
}
Polygon res;
res.reserve(lower.size() + upper.size() - 2);
res.insert(res.size(), lower.begin(), lower.end());
res.insert(res.size(), std::next(upper.begin()), std::prev(upper.end()));
return res;
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Distance/SegmentAndSegment.hpp"
#line 2 "Src/GeometryR2/Segment.hpp"
#line 2 "Src/GeometryR2/Distance/PointAndPoint.hpp"
#line 4 "Src/GeometryR2/Distance/PointAndPoint.hpp"
namespace zawa {
namespace geometryR2 {
Real Distance(const Point& p0, const Point& p1) {
return Point{p1 - p0}.norm();
}
Real DistanceSquare(const Point& p0, const Point& p1) {
return Point{p1 - p0}.normSquare();
}
} // namespace geometryR2
} // namespace zawa
#line 6 "Src/GeometryR2/Segment.hpp"
#line 9 "Src/GeometryR2/Segment.hpp"
namespace zawa {
namespace geometryR2 {
class Segment {
private:
Point p0_{}, p1_{};
public:
/* constructor */
Segment() = default;
Segment(const Point& p0, const Point& p1) : p0_{p0}, p1_{p1} {}
Segment(Real x0, Real y0, Real x1, Real y1) : p0_{x0, y0}, p1_{x1, y1} {}
/* getter setter */
const Point& p0() const {
return p0_;
}
Point& p0() {
return p0_;
}
const Point& p1() const {
return p1_;
}
Point& p1() {
return p1_;
}
/* member function */
bool valid() const {
return p0_ != p1_;
}
bool straddle(const Segment& s) const {
return Relation(p0_, p1_, s.p0()) * Relation(p0_, p1_, s.p1()) <= 0;
}
Real length() const {
assert(valid());
return Distance(p0_, p1_);
}
Point midpoint() const {
assert(valid());
return p0_ + Vector{p1_ - p0_} / static_cast<Real>(2);
}
};
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Intersect/SegmentAndSegment.hpp"
#line 4 "Src/GeometryR2/Intersect/SegmentAndSegment.hpp"
#line 6 "Src/GeometryR2/Intersect/SegmentAndSegment.hpp"
namespace zawa {
namespace geometryR2 {
bool Intersect(const Segment& s0, const Segment& s1) {
assert(s0.valid());
assert(s1.valid());
return s0.straddle(s1) and s1.straddle(s0);
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Distance/PointAndSegment.hpp"
#line 7 "Src/GeometryR2/Distance/PointAndSegment.hpp"
#line 9 "Src/GeometryR2/Distance/PointAndSegment.hpp"
namespace zawa {
namespace geometryR2 {
Real Distance(const Point& p, const Segment& s) {
assert(s.valid());
if (Negative(Dot(s.p1() - s.p0(), p - s.p0()))) {
return Distance(p, s.p0());
}
if (Negative(Dot(s.p0() - s.p1(), p - s.p1()))) {
return Distance(p, s.p1());
}
return Abs(Cross(s.p1() - s.p0(), p - s.p0())) / s.length();
}
bool PointOnSegment(const Point& p, const Segment& s) {
assert(s.valid());
return Zero(Distance(p, s));
}
} // namespace geometryR2
} // namespace zawa
#line 7 "Src/GeometryR2/Distance/SegmentAndSegment.hpp"
#line 9 "Src/GeometryR2/Distance/SegmentAndSegment.hpp"
namespace zawa {
namespace geometryR2 {
Real Distance(const Segment& s0, const Segment& s1) {
assert(s0.valid());
assert(s1.valid());
if (Intersect(s0, s1)) {
return static_cast<Real>(0);
}
else {
return std::min({
Distance(s1.p0(), s0),
Distance(s1.p1(), s0),
Distance(s0.p0(), s1),
Distance(s0.p1(), s1) });
}
}
} // namespace geometryR2
} // namespace zawa
#line 2 "Src/GeometryR2/Contain/ConvexPolygonContainsPoint.hpp"
#line 2 "Src/Utility/BinarySearch.hpp"
#line 4 "Src/Utility/BinarySearch.hpp"
#line 6 "Src/Utility/BinarySearch.hpp"
#include <functional>
#include <type_traits>
#include <utility>
namespace zawa {
namespace internal {
template <class T>
T MidPoint(T a, T b) {
if (a > b) std::swap(a, b);
return a + ((b - a) >> 1);
}
template <class T>
T Abs(T a, T b) {
return (a >= b ? a - b : b - a);
}
} // namespace zawa::internal
template <class T, class Function>
T BinarySearch(T ok, T ng, const Function& f) {
static_assert(std::is_integral_v<T>, "T must be integral type");
static_assert(std::is_convertible_v<Function, std::function<bool(T)>>, "f must be function bool(T)");
while (internal::Abs(ok, ng) > 1) {
T mid{ internal::MidPoint(ok, ng) };
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class Function>
T BinarySearch(T ok, T ng, const Function& f, u32 upperLimit) {
static_assert(std::is_signed_v<T>, "T must be signed arithmetic type");
static_assert(std::is_convertible_v<Function, std::function<bool(T)>>, "f must be function bool(T)");
for (u32 _{} ; _ < upperLimit ; _++) {
T mid{ (ok + ng) / (T)2 };
(f(mid) ? ok : ng) = mid;
}
return ok;
}
} // namespace zawa
#line 2 "Src/GeometryR2/Contain/State.hpp"
namespace zawa {
namespace geometryR2 {
enum ContainState {
INSIDE,
ONLINE,
OUTSIDE
};
} // namespace geometryR2
} // namespace zawa
#line 9 "Src/GeometryR2/Contain/ConvexPolygonContainsPoint.hpp"
#line 11 "Src/GeometryR2/Contain/ConvexPolygonContainsPoint.hpp"
namespace zawa {
namespace geometryR2 {
namespace internal {
bool TriangleContainsPoint(const Point& p0, const Point& p1, const Point& p2, const Point& p) {
Real area{Abs(Cross(p1 - p0, p2 - p0))};
Real value{};
value += Abs(Cross(p0 - p, p1 - p));
value += Abs(Cross(p1 - p, p2 - p));
value += Abs(Cross(p2 - p, p0 - p));
return Equal(area, value);
}
} // namespace internal
// note: 凸多角形であることを確認してください。
// note: normal formにしておいてください
ContainState ConvexPolygonContainsPoint(const Polygon& polygon, const Point& p) {
usize n{polygon.size()};
assert(n >= static_cast<usize>(3));
if (polygon[0] == p or polygon[1] == p or polygon[n - 1] == p) {
return ONLINE;
}
if (Relation(polygon[0], polygon[1], p) == ON_SEGMENT) {
return ONLINE;
}
if (Relation(polygon[0], polygon[n - 1], p) == ON_SEGMENT) {
return ONLINE;
}
if (Zero(Cross(polygon[1] - polygon[0], p - polygon[0]))) {
return OUTSIDE;
}
if (Zero(Cross(polygon[n - 1] - polygon[0], p - polygon[0]))) {
return OUTSIDE;
}
if (!(Relation(polygon[0], polygon[1], p) == COUNTER_CLOCKWISE and Relation(polygon[0], p, polygon[n - 1]) == COUNTER_CLOCKWISE)) {
return OUTSIDE;
}
auto f{[&](usize i) -> bool {
return Relation(polygon[0], polygon[i], p) == COUNTER_CLOCKWISE;
}};
usize pos{BinarySearch(usize{0}, usize{n - 1}, f)};
if (p == polygon[pos]) return ONLINE;
if (p == polygon[pos + 1]) return ONLINE;
if (Relation(polygon[pos], polygon[pos + 1], p) == ON_SEGMENT) return ONLINE;
if (internal::TriangleContainsPoint(polygon[0], polygon[pos], polygon[pos + 1], p)) {
return INSIDE;
}
else {
return OUTSIDE;
}
}
} // namespace geometryZ2
} // namespace zawa
#line 10 "Test/AOJ/2827.test.cpp"
using namespace zawa::geometryR2;
#line 13 "Test/AOJ/2827.test.cpp"
#include <iomanip>
#line 16 "Test/AOJ/2827.test.cpp"
#include <queue>
int N, NV[100];
Real H[100], THETA, GAMMA;
Polygon P[100];
Point START, GOAL;
bool inner(const Polygon& p, const Polygon& q) {
for (int i = 0 ; i < std::ssize(p) ; i++) if (ConvexPolygonContainsPoint(q, p[i]) == OUTSIDE) return false;
return true;
}
Real Distance(const Polygon& p, const Polygon& q) {
if (inner(p, q) or inner(q, p)) return 0;
Real res = 1e18l;
for (int i = 0 ; i < std::ssize(p) ; i++) for (int j = 0 ; j < std::ssize(q) ; j++) {
res = std::min(res, Distance(Segment{p[i], p[i+1==std::ssize(p)?0:i+1]},
Segment{q[j], q[j+1==std::ssize(q)?0:j+1]}));
}
return res;
}
Real NaiveDistance(const Polygon& poly, const Point& p) {
if (ConvexPolygonContainsPoint(poly, p) != OUTSIDE) {
return 0;
}
else {
Real res = 1e18l;
for (int i = 0 ; i < std::ssize(poly) ; i++) {
res = std::min(res, Distance(p, Segment{poly[i], poly[i+1==std::ssize(poly)?0:i+1]}));
}
return res;
}
}
Real solve() {
std::vector<Polygon> hulls = [&]() {
std::vector<PointCloud> pcs(N);
std::vector<Polygon> res(N);
for (int i = 0 ; i < N ; i++) {
const Real shadow_len = H[i] * cosl(GAMMA) / sinl(GAMMA);
for (int j = 0 ; j < NV[i] ; j++) {
pcs[i].push_back(P[i][j]);
pcs[i].push_back(P[i][j] - shadow_len * Point{cosl(THETA), sinl(THETA)});
}
res[i] = ConvexHull<true>(pcs[i]);
assert(std::ssize(res[i]) >= 3);
res[i].normalForm();
}
return res;
}();
const int n = N + 2, st = N, go = N + 1;
std::vector g(n, std::vector<Real>(n));
for (int i = 0 ; i < N ; i++) {
const Real w = NaiveDistance(hulls[i], START);
g[st][i] = g[i][st] = w;
}
for (int i = 0 ; i < N ; i++) {
const Real w = NaiveDistance(hulls[i], GOAL);
g[go][i] = g[i][go] = w;
}
g[st][go] = g[go][st] = Distance(START, GOAL);
for (int i = 0 ; i < N ; i++) {
for (int j = i + 1 ; j < N ; j++) {
g[i][j] = g[j][i] = Distance(hulls[i], hulls[j]);
}
}
std::vector<Real> dist(n, 1e18l);
using qt = std::pair<Real, int>;
std::priority_queue<qt, std::vector<qt>, std::greater<qt>> que;
dist[st] = 0;
que.push({dist[st], st});
// for (int i = 0 ; i < n ; i++) {
// for (int j = 0 ; j < n ; j++) std::cout << g[i][j] << ' ';
// std::cout << std::endl;
// }
while (que.size()) {
auto [d, v] = que.top();
que.pop();
if (Bigger(d, dist[v])) continue;
for (int i = 0 ; i < n ; i++) if (Smaller(d + g[v][i], dist[i])) {
dist[i] = d + g[v][i];
que.push({dist[i], i});
}
}
return dist[go];
}
int main() {
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(5);
while (true) {
std::cin >> N;
if (N == 0) break;
for (int i = 0 ; i < N ; i++) {
std::cin >> NV[i] >> H[i];
Polygon p(NV[i]);
for (int j = 0 ; j < NV[i] ; j++) std::cin >> p[j].x() >> p[j].y();
P[i] = std::move(p);
}
std::cin >> THETA >> GAMMA;
THETA = ArcToRadian(THETA);
GAMMA = ArcToRadian(GAMMA);
std::cin >> START.x() >> START.y() >> GOAL.x() >> GOAL.y();
std::cout << solve() << '\n';
}
}