This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_I"
#include "../../Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#include "../../Src/Template/TypeAlias.hpp"
using namespace zawa;
#include <iostream>
struct M {
using Element = int;
static constexpr int identity() {
return 0;
}
static constexpr int operation(int l, int r) {
return l + r;
}
static constexpr int power(int v, u64 exp) {
return v * (int)exp;
}
};
int main() {
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
int N, Q;
std::cin >> N >> Q;
AssignmentSegmentTree<M> seg(N);
while (Q--) {
int T, L, R;
std::cin >> T >> L >> R;
R++;
if (T == 0) {
int X;
std::cin >> X;
seg.assign(L, R, X);
}
else if (T == 1) {
std::cout << seg.product(L, R) << '\n';
}
else assert(false);
}
}
#line 1 "Test/AOJ/DSL_2_I.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_I"
#line 2 "Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 2 "Src/DataStructure/SegmentTree/SegmentTree.hpp"
#line 5 "Src/DataStructure/SegmentTree/SegmentTree.hpp"
#include <vector>
#include <cassert>
#include <functional>
#include <type_traits>
#include <ostream>
namespace zawa {
template <concepts::Monoid Monoid>
class SegmentTree {
public:
using VM = Monoid;
using V = typename VM::Element;
using OM = Monoid;
using O = typename OM::Element;
SegmentTree() = default;
explicit SegmentTree(usize n) : m_n{ n }, m_dat(n << 1, VM::identity()) {}
explicit SegmentTree(const std::vector<V>& dat) : m_n{ dat.size() }, m_dat(dat.size() << 1, VM::identity()) {
for (usize i{} ; i < m_n ; i++) {
m_dat[i + m_n] = dat[i];
}
for (usize i{m_n} ; i-- ; i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
[[nodiscard]] inline usize size() const noexcept {
return m_n;
}
[[nodiscard]] V get(usize i) const {
assert(i < size());
return m_dat[i + m_n];
}
[[nodiscard]] V operator[](usize i) const {
assert(i < size());
return m_dat[i + m_n];
}
void operation(usize i, const O& value) {
assert(i < size());
i += size();
m_dat[i] = OM::operation(m_dat[i], value);
while (i = parent(i), i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
void assign(usize i, const V& value) {
assert(i < size());
i += size();
m_dat[i] = value;
while (i = parent(i), i) {
m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
}
}
[[nodiscard]] V product(u32 l, u32 r) const {
assert(l <= r and r <= size());
V L{ VM::identity() }, R{ VM::identity() };
for (l += size(), r += size() ; l < r ; l = parent(l), r = parent(r)) {
if (l & 1) {
L = VM::operation(L, m_dat[l++]);
}
if (r & 1) {
R = VM::operation(m_dat[--r], R);
}
}
return VM::operation(L, R);
}
template <class Function>
[[nodiscard]] usize maxRight(usize l, const Function& f) {
assert(l < size());
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
assert(f(VM::identity()));
usize res{l}, width{1};
V prod{ VM::identity() };
// 現在の見ている頂点の幅をwidthで持つ
// 境界がある頂点を含む部分木の根を探す
// (折り返す時は必要以上の幅を持つ根になるが、widthを持っているのでオーバーしない)
for (l += size() ; res + width <= size() ; l = parent(l), width <<= 1) if (l & 1) {
if (not f(VM::operation(prod, m_dat[l]))) break;
res += width;
prod = VM::operation(prod, m_dat[l++]);
}
// 根から下って、境界を発見する
while (l = left(l), width >>= 1) {
if (res + width <= size() and f(VM::operation(prod, m_dat[l]))) {
res += width;
prod = VM::operation(prod, m_dat[l++]);
}
}
return res;
}
template <class Function>
[[nodiscard]] usize minLeft(usize r, const Function& f) const {
assert(r <= size());
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
assert(f(VM::identity()));
usize res{r}, width{1};
V prod{ VM::identity() };
for (r += size() ; res >= width ; r = parent(r), width <<= 1) if (r & 1) {
if (not f(VM::operation(m_dat[r - 1], prod))) break;
res -= width;
prod = VM::operation(prod, m_dat[--r]);
}
while (r = left(r), width >>= 1) {
if (res >= width and f(VM::operation(m_dat[r - 1], prod))) {
res -= width;
prod = VM::operation(m_dat[--r], prod);
}
}
return res;
}
friend std::ostream& operator<<(std::ostream& os, const SegmentTree& st) {
for (usize i{1} ; i < 2 * st.size() ; i++) {
os << st.m_dat[i] << (i + 1 == 2 * st.size() ? "" : " ");
}
return os;
}
private:
constexpr u32 left(u32 v) const {
return v << 1;
}
constexpr u32 right(u32 v) const {
return v << 1 | 1;
}
constexpr u32 parent(u32 v) const {
return v >> 1;
}
usize m_n;
std::vector<V> m_dat;
};
} // namespace zawa
#line 6 "Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#line 9 "Src/DataStructure/SegmentTree/AssignmentSegmentTree.hpp"
#include <set>
namespace zawa {
namespace concepts {
template <class T, class U>
concept Powerable = requires {
typename T::Element;
{ T::power(std::declval<typename T::Element>(), std::declval<U>()) }
-> std::same_as<typename T::Element>;
};
template <class T>
concept EqualCompare = requires(T a, T b) {
{ a == b } -> std::convertible_to<bool>;
};
template <class T>
concept FastPowerableMonoid = Monoid<T> and Powerable<T, u64>;
} // namespace concepts
template <concepts::Monoid Monoid>
class AssignmentSegmentTree {
public:
using VM = Monoid;
using V = typename VM::Element;
AssignmentSegmentTree() = default;
explicit AssignmentSegmentTree(usize n) : m_seg{n}, m_dat(n, VM::identity()), m_ls{} {
m_dat.shrink_to_fit();
assert(n);
m_ls.insert(0u);
m_ls.insert(n);
}
explicit AssignmentSegmentTree(std::vector<V> dat) : m_seg{}, m_dat{dat}, m_ls{} {
// dat: 区間の左端lにa_{l}^{r-l}, それ以外のiはidentity()にする -> セグ木にこれをのせる
// m_dat: 区間の左端lにa_{l}, それ以外のiはidentity()にする
m_dat.shrink_to_fit();
if constexpr (concepts::EqualCompare<V>) {
for (usize i{}, j{} ; i < m_dat.size() ; ) {
while (j < dat.size() and dat[i] == dat[j]) j++;
m_ls.insert(i);
dat[i] = power(m_dat[i], j - i);
for ( ; ++i < j ; dat[i] = m_dat[i] = VM::identity()) ;
}
}
else {
for (usize i{} ; i < m_dat.size() ; i++) m_ls.insert(i);
}
m_ls.insert(dat.size());
m_seg = decltype(m_seg){dat};
}
[[nodiscard]] inline usize size() const noexcept {
return m_dat.size();
}
[[nodiscard]] V product(usize l, usize r) const {
assert(l <= r and r <= size());
if (l == r) return VM::identity();
const auto second_l = m_ls.upper_bound(l);
const auto first_l = std::prev(second_l);
if (second_l != m_ls.end() and r <= *second_l) { // 一つの区間に含まれている
return power(m_dat[*first_l], r - l);
}
const auto last_l = std::prev(m_ls.upper_bound(r));
V res = VM::operation(
power(m_dat[*first_l], *second_l - l),
m_seg.product(*second_l, *last_l)
);
if (r == *last_l) return res;
return VM::operation(res, power(m_dat[*last_l], r - *last_l));
}
void assign(usize l, usize r, V v) {
assert(l <= r and r <= m_dat.size());
if (l == r) return;
// assert(*it_l < n);
auto it_l = std::prev(m_ls.upper_bound(l)), it_r = std::prev(m_ls.upper_bound(r));
if (*it_l < l) m_seg.assign(*it_l, power(m_dat[*it_l], l - *it_l));
m_seg.assign(l, power(v, r - l));
if (*it_r < r and r < m_dat.size()) {
m_dat[r] = m_dat[*it_r];
m_seg.assign(r, power(m_dat[r], *std::next(it_r) - r));
m_ls.insert(r);
}
m_dat[l] = v;
for (it_l++ ; *it_l < r ; it_l = m_ls.erase(it_l)) {
m_seg.assign(*it_l, VM::identity());
m_dat[*it_l] = VM::identity();
}
m_ls.insert(l);
}
private:
SegmentTree<VM> m_seg;
std::vector<V> m_dat;
std::set<usize> m_ls;
static V power(V v, u32 p) requires concepts::FastPowerableMonoid<VM> {
return VM::power(v, p);
}
static V power(V v, u32 p) {
V res{VM::identity()};
while (p) {
if (p & 1) res = VM::operation(res, v);
v = VM::operation(v, v);
p >>= 1;
}
return res;
}
};
} // namespace zawa
#line 5 "Test/AOJ/DSL_2_I.test.cpp"
using namespace zawa;
#include <iostream>
struct M {
using Element = int;
static constexpr int identity() {
return 0;
}
static constexpr int operation(int l, int r) {
return l + r;
}
static constexpr int power(int v, u64 exp) {
return v * (int)exp;
}
};
int main() {
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
int N, Q;
std::cin >> N >> Q;
AssignmentSegmentTree<M> seg(N);
while (Q--) {
int T, L, R;
std::cin >> T >> L >> R;
R++;
if (T == 0) {
int X;
std::cin >> X;
seg.assign(L, R, X);
}
else if (T == 1) {
std::cout << seg.product(L, R) << '\n';
}
else assert(false);
}
}