This documentation is automatically generated by online-judge-tools/verification-helper
// #define PROBLEM "https://atcoder.jp/contests/abc256/tasks/abc256_h"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
/*
* AtCoder Beginner Contest 256 Ex - I like Query Problem
* https://atcoder.jp/contests/abc256/submissions/67095836
*/
#include "../../Src/DataStructure/SegmentTree/SegmentTreeBeats.hpp"
using namespace zawa;
#include <cassert>
#include <iostream>
#include <vector>
struct VD {
long long sum = 0;
int val = 0, cnt = 0;
bool same = true;
};
struct VM {
using Element = VD;
static VD identity() {
return VD{};
}
static VD operation(const VD& L, const VD& R) {
if (L.cnt == 0) return R;
if (R.cnt == 0) return L;
long long sum = L.sum + R.sum;
int val = L.val, cnt = L.cnt + R.cnt;
bool same = L.same and R.same and L.val == R.val;
return {sum,val,cnt,same};
}
};
using OD = std::pair<int, long long>;
std::ostream& operator<<(std::ostream& os, const VD& v) {
os << '[' << v.sum << ',' << v.cnt << ',' << v.val << ',' << v.same << ']';
return os;
}
std::ostream& operator<<(std::ostream& os, const OD& v) {
os << '(' << v.first << ',' << v.second << ')';
return os;
}
struct OM {
using Element = OD;
static Element identity() {
return {-1, -1};
}
// division -> 0, set -> 1
static Element operation(const Element L, const Element R) {
if (L.first == -1) return R;
else if (R.first == -1) return L;
else if (R.first == 1) return R; // Rが代入
else if (L.first == 0) return {0,L.second*R.second};
else return {1,L.second / R.second};
}
};
struct ACT {
using ValueMonoid = VM;
using OperatorMonoid = OM;
static VM::Element mapping(VM::Element v, OM::Element o) {
if (o.first == 0) {
v.val /= o.second;
v.sum = (long long)v.val * v.cnt;
}
if (o.first == 1) {
v.val = o.second;
v.sum = (long long)v.val * v.cnt;
}
return v;
}
};
bool division_break_condition(const VD& v, const OD&) {
return v.same and v.val == 0;
}
bool set_break_condition(const VD&, const OD&) {
return false;
}
bool tag_condition(const VD& v, const OD&) {
return v.same;
}
void solve() {
int N, Q;
std::cin >> N >> Q;
std::vector<VD> init(N);
for (int i = 0 ; i < N ; i++) {
int A;
std::cin >> A;
init[i] = {A,A,1,true};
}
SegmentTreeBeats<ACT> seg{init};
while (Q--) {
int T;
std::cin >> T;
if (T == 1) {
int L, R, x;
std::cin >> L >> R >> x;
L--;
seg.operation(L, R, {0,x}, division_break_condition, tag_condition);
}
else if (T == 2) {
int L, R, x;
std::cin >> L >> R >> x;
L--;
seg.operation(L, R, {1,x}, set_break_condition, tag_condition);
}
else if (T == 3) {
int L, R;
std::cin >> L >> R;
L--;
std::cout << seg.product(L, R).sum << '\n';
}
else assert(false);
}
}
int main() {
#ifdef ATCODER
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
solve();
#else
std::cout << "Hello World\n";
#endif
}
#line 1 "Test/AtCoder/abc256_h.test.cpp"
// #define PROBLEM "https://atcoder.jp/contests/abc256/tasks/abc256_h"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
/*
* AtCoder Beginner Contest 256 Ex - I like Query Problem
* https://atcoder.jp/contests/abc256/submissions/67095836
*/
#line 2 "Src/DataStructure/SegmentTree/SegmentTreeBeats.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept MonoidWithAction = requires {
requires Monoid<typename T::ValueMonoid>;
requires Monoid<typename T::OperatorMonoid>;
{ T::mapping(
std::declval<typename T::ValueMonoid::Element>(),
std::declval<typename T::OperatorMonoid::Element>()
) } -> std::same_as<typename T::ValueMonoid::Element>;
};
} // namespace concepts
} // namespace zawa
#line 5 "Src/DataStructure/SegmentTree/SegmentTreeBeats.hpp"
#include <algorithm>
#include <bit>
#include <cassert>
#include <ranges>
#include <vector>
namespace zawa {
// ref: https://codeforces.com/blog/entry/57319
template <concepts::MonoidWithAction S>
class SegmentTreeBeats {
public:
using VM = typename S::ValueMonoid;
using OM = typename S::OperatorMonoid;
using V = typename VM::Element;
using O = typename OM::Element;
SegmentTreeBeats() = default;
explicit SegmentTreeBeats(usize n)
: m_n{n}, m_sz{1u << std::bit_width(n)}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {}
explicit SegmentTreeBeats(const std::vector<V>& a)
: m_n{a.size()}, m_sz{1u << std::bit_width(a.size())}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {
std::ranges::copy(a, m_dat.begin() + inner_size());
for (usize i = inner_size() ; --i ; ) recalc(i);
}
[[nodiscard]] inline usize size() const noexcept {
return m_n;
}
[[nodiscard]] V operator[](usize i) {
assert(i < size());
return get(i, 1, 0, inner_size());
}
[[nodiscard]] V get(usize i) {
return (*this)[i];
}
[[nodiscard]] V product(usize l, usize r) {
assert(l <= r and r <= size());
return product(l, r, 1, 0, inner_size());
}
template <class BREAK_CONDITION, class TAG_CONDITION>
requires (std::predicate<BREAK_CONDITION, V, O> and std::predicate<TAG_CONDITION, V, O>)
void operation(usize l, usize r, const O& o, BREAK_CONDITION break_condition, TAG_CONDITION tag_condition) {
assert(l <= r and r <= size());
operation(l, r, o, 1, 0, inner_size(), break_condition, tag_condition);
}
void assign(usize i, const V& v) {
assert(i < size());
assign(i, v, 1, 0, inner_size());
}
template <class BREAK_CONDITION, class TAG_CONDITION>
requires (std::predicate<BREAK_CONDITION, V, O> and std::predicate<TAG_CONDITION, V, O>)
void operation(usize i, const O& o, BREAK_CONDITION break_condition, TAG_CONDITION tag_condition) {
assert(i < size());
operation(i, o, 1, 0, inner_size(), break_condition, tag_condition);
}
private:
using NodeInfo = std::tuple<usize, usize, usize>;
public:
template <class F>
requires std::predicate<F, V>
usize maxRight(usize l, F f) {
assert(l <= size());
if (!f(VM::identity())) return l;
if (l == size()) return size();
std::vector<NodeInfo> ranges;
partition_range(l, size(), ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges) {
if (!f(VM::operation(prod, m_dat[nd]))) {
return maxRight(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return size();
}
template <class F>
requires std::predicate<F, V>
usize minLeft(usize r, F f) {
assert(r <= size());
if (!f(VM::identity())) return r;
if (!r) return 0;
std::vector<NodeInfo> ranges;
partition_range(0, r, ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges | std::views::reverse) {
if (!f(VM::operation(m_dat[nd], prod))) {
return minLeft(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return 0;
}
private:
usize m_n{}, m_sz{};
std::vector<V> m_dat{};
std::vector<O> m_lazy{};
inline usize inner_size() const noexcept {
return m_sz;
}
void recalc(usize v) {
m_dat[v] = VM::operation(m_dat[v << 1 | 0], m_dat[v << 1 | 1]);
}
void propagate(usize v) {
if (v < inner_size()) {
const usize lch = v << 1 | 0, rch = v << 1 | 1;
m_dat[lch] = S::mapping(m_dat[lch], m_lazy[v]);
m_lazy[lch] = OM::operation(m_lazy[lch], m_lazy[v]);
m_dat[rch] = S::mapping(m_dat[rch], m_lazy[v]);
m_lazy[rch] = OM::operation(m_lazy[rch], m_lazy[v]);
m_lazy[v] = OM::identity();
}
}
V product(usize ql, usize qr, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return VM::identity();
if (ql <= nl and nr <= qr) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return VM::operation(
product(ql, qr, nd << 1 | 0, nl, m),
product(ql, qr, nd << 1 | 1, m, nr)
);
}
V get(usize i, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return i < m ? get(i, nd << 1 | 0, nl, m) : get(i, nd << 1 | 1, m, nr);
}
template <class BREAK_CONDITION, class TAG_CONDITION>
requires (std::predicate<BREAK_CONDITION, V, O> and std::predicate<TAG_CONDITION, V, O>)
void operation(usize ql, usize qr, const O& o, usize nd, usize nl, usize nr, BREAK_CONDITION break_condition, TAG_CONDITION tag_condition) {
assert(nd < m_dat.size() or !"failed to operation to node such that length is 1. break_condition or/and tag_condition is something wrong");
if (qr <= nl or nr <= ql or break_condition(m_dat[nd], o)) return;
if (ql <= nl and nr <= qr and tag_condition(m_dat[nd], o)) {
m_dat[nd] = S::mapping(m_dat[nd], o);
m_lazy[nd] = OM::operation(m_lazy[nd], o);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
operation(ql, qr, o, nd << 1 | 0, nl, m, break_condition, tag_condition);
operation(ql, qr, o, nd << 1 | 1, m, nr, break_condition, tag_condition);
recalc(nd);
}
template <class BREAK_CONDITION, class TAG_CONDITION>
requires (std::predicate<BREAK_CONDITION, V, O> and std::predicate<TAG_CONDITION, V, O>)
void operation(usize i, const O& o, usize nd, usize nl, usize nr, BREAK_CONDITION break_condition, TAG_CONDITION tag_condition) {
if (break_condition(m_dat[nd], o)) return;
if (nd >= inner_size()) {
assert(tag_condition(m_dat[nd], o) or !"failed to operation to node such that length is 1. break_condition or/and tag_condition is something wrong");
m_dat[nd] = S::mapping(m_dat[nd], o);
// 葉頂点なので、lazyへのopは不要
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? operation(i, o, nd << 1 | 0, nl, m, break_condition, tag_condition) : operation(i, o, nd << 1 | 1, m, nr, break_condition, tag_condition);
recalc(nd);
}
void assign(usize i, const V& v, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) {
m_dat[nd] = v;
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? assign(i, v, nd << 1 | 0, nl, m) : assign(i, v, nd << 1 | 1, m, nr);
recalc(nd);
}
void partition_range(usize ql, usize qr, std::vector<NodeInfo>& res, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return;
if (ql <= nl and nr <= qr) {
res.emplace_back(nd, nl, nr);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
partition_range(ql, qr, res, nd << 1 | 0, nl, m);
partition_range(ql, qr, res, nd << 1 | 1, m, nr);
}
template <class F>
requires std::predicate<F, V>
usize maxRight(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nl;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(prod, m_dat[lch])) ?
maxRight(f, VM::operation(prod, m_dat[lch]), rch, m, nr) : maxRight(f, prod, lch, nl, m);
}
template <class F>
requires std::predicate<F, V>
usize minLeft(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nr;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(m_dat[rch], prod)) ?
minLeft(f, VM::operation(m_dat[rch], prod), lch, nl, m) : minLeft(f, prod, rch, m, nr);
}
};
} // namespace zawa
#line 10 "Test/AtCoder/abc256_h.test.cpp"
using namespace zawa;
#line 13 "Test/AtCoder/abc256_h.test.cpp"
#include <iostream>
#line 15 "Test/AtCoder/abc256_h.test.cpp"
struct VD {
long long sum = 0;
int val = 0, cnt = 0;
bool same = true;
};
struct VM {
using Element = VD;
static VD identity() {
return VD{};
}
static VD operation(const VD& L, const VD& R) {
if (L.cnt == 0) return R;
if (R.cnt == 0) return L;
long long sum = L.sum + R.sum;
int val = L.val, cnt = L.cnt + R.cnt;
bool same = L.same and R.same and L.val == R.val;
return {sum,val,cnt,same};
}
};
using OD = std::pair<int, long long>;
std::ostream& operator<<(std::ostream& os, const VD& v) {
os << '[' << v.sum << ',' << v.cnt << ',' << v.val << ',' << v.same << ']';
return os;
}
std::ostream& operator<<(std::ostream& os, const OD& v) {
os << '(' << v.first << ',' << v.second << ')';
return os;
}
struct OM {
using Element = OD;
static Element identity() {
return {-1, -1};
}
// division -> 0, set -> 1
static Element operation(const Element L, const Element R) {
if (L.first == -1) return R;
else if (R.first == -1) return L;
else if (R.first == 1) return R; // Rが代入
else if (L.first == 0) return {0,L.second*R.second};
else return {1,L.second / R.second};
}
};
struct ACT {
using ValueMonoid = VM;
using OperatorMonoid = OM;
static VM::Element mapping(VM::Element v, OM::Element o) {
if (o.first == 0) {
v.val /= o.second;
v.sum = (long long)v.val * v.cnt;
}
if (o.first == 1) {
v.val = o.second;
v.sum = (long long)v.val * v.cnt;
}
return v;
}
};
bool division_break_condition(const VD& v, const OD&) {
return v.same and v.val == 0;
}
bool set_break_condition(const VD&, const OD&) {
return false;
}
bool tag_condition(const VD& v, const OD&) {
return v.same;
}
void solve() {
int N, Q;
std::cin >> N >> Q;
std::vector<VD> init(N);
for (int i = 0 ; i < N ; i++) {
int A;
std::cin >> A;
init[i] = {A,A,1,true};
}
SegmentTreeBeats<ACT> seg{init};
while (Q--) {
int T;
std::cin >> T;
if (T == 1) {
int L, R, x;
std::cin >> L >> R >> x;
L--;
seg.operation(L, R, {0,x}, division_break_condition, tag_condition);
}
else if (T == 2) {
int L, R, x;
std::cin >> L >> R >> x;
L--;
seg.operation(L, R, {1,x}, set_break_condition, tag_condition);
}
else if (T == 3) {
int L, R;
std::cin >> L >> R;
L--;
std::cout << seg.product(L, R).sum << '\n';
}
else assert(false);
}
}
int main() {
#ifdef ATCODER
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
solve();
#else
std::cout << "Hello World\n";
#endif
}