cp-documentation

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub zawa-tin/cp-documentation

:heavy_check_mark: Test/AtCoder/abc331_f.test.cpp

Depends on

Code

#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
// #define PROBLEM "https://atcoder.jp/contests/abc331/tasks/abc331_f"

#include "../../Src/Template/IOSetting.hpp"
#include "../../Src/DataStructure/SegmentTree/SegmentTree.hpp"
#include "../../Src/Algebra/Monoid/RollingHashMonoid.hpp"
using namespace zawa;

#include <cassert>
#include <iostream>
#include <random>
#include <string>
#include <vector>

using Value = RollingHashMonoidData::Value;

Value RollingHashMonoidData::base{
    RollingHashMonoidData::randomValue(26)
};

int main() {
#ifdef ATCODER
    SetFastIO();
    int N, Q; 
    std::cin >> N >> Q;
    std::string S; 
    std::cin >> S;

    std::vector<RollingHashMonoidData> init(N), tini(N); 
    for (int i{} ; i < N ; i++) {
        init[i] = RollingHashMonoidData{S[i]};
        tini[N - i - 1] = RollingHashMonoidData{S[i]};
    }
    SegmentTree<RollingHashMonoid> seg{init}, ges{tini};
    while(Q--) {
        int t; 
        std::cin >> t;
        if (t == 1) {
            int x; 
            std::cin >> x;
            x--;
            char c; 
            std::cin >> c;
            seg.set(x, RollingHashMonoidData{c});
            ges.set(N - x - 1, RollingHashMonoidData{c});
        }
        else if (t == 2) {
            int l, r; std::cin >> l >> r;
            l--;
            bool ans{seg.product(l, r) == ges.product(N - r, N - l)};
            std::cout << (ans ? "Yes" : "No") << '\n';
        }
        else {
            assert(!"input fail");
        }
    }
#else
    std::cout << "Hello World\n";
#endif
}
#line 1 "Test/AtCoder/abc331_f.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
// #define PROBLEM "https://atcoder.jp/contests/abc331/tasks/abc331_f"

#line 2 "Src/Template/IOSetting.hpp"

#line 2 "Src/Template/TypeAlias.hpp"

#include <cstdint>
#include <cstddef>

namespace zawa {

using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;

using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;

using usize = std::size_t;

} // namespace zawa
#line 4 "Src/Template/IOSetting.hpp"

#include <iostream>
#include <iomanip>

namespace zawa {

void SetFastIO() {
    std::cin.tie(nullptr)->sync_with_stdio(false);
}

void SetPrecision(u32 dig) {
    std::cout << std::fixed << std::setprecision(dig);
}

} // namespace zawa
#line 2 "Src/DataStructure/SegmentTree/SegmentTree.hpp"

#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"

#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"

#include <concepts>

namespace zawa {

namespace concepts {

template <class T>
concept Semigroup = requires {
    typename T::Element;
    { T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};

} // namespace concepts

} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"

#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"

namespace zawa {

namespace concepts {

template <class T>
concept Identitiable = requires {
    typename T::Element;
    { T::identity() } -> std::same_as<typename T::Element>;
};

template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;

} // namespace

} // namespace zawa
#line 5 "Src/DataStructure/SegmentTree/SegmentTree.hpp"

#include <vector>
#include <cassert>
#include <functional>
#include <type_traits>
#include <ostream>

namespace zawa {

template <concepts::Monoid Monoid>
class SegmentTree {
public:

    using VM = Monoid;

    using V = typename VM::Element;

    using OM = Monoid;

    using O = typename OM::Element;

    SegmentTree() = default;

    explicit SegmentTree(usize n) : m_n{ n }, m_dat(n << 1, VM::identity()) {}

    explicit SegmentTree(const std::vector<V>& dat) : m_n{ dat.size() }, m_dat(dat.size() << 1, VM::identity()) {
        for (usize i{} ; i < m_n ; i++) {
            m_dat[i + m_n] = dat[i];
        }
        for (usize i{m_n} ; i-- ; i) {
            m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
        }
    }

    [[nodiscard]] inline usize size() const noexcept {
        return m_n;
    }

    [[nodiscard]] V get(usize i) const {
        assert(i < size());
        return m_dat[i + m_n];
    }

    [[nodiscard]] V operator[](usize i) const {
        assert(i < size());
        return m_dat[i + m_n];
    }

    void operation(usize i, const O& value) {
        assert(i < size());
        i += size();
        m_dat[i] = OM::operation(m_dat[i], value);
        while (i = parent(i), i) {
            m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
        }
    }

    void assign(usize i, const V& value) {
        assert(i < size());
        i += size();
        m_dat[i] = value;
        while (i = parent(i), i) {
            m_dat[i] = VM::operation(m_dat[left(i)], m_dat[right(i)]);
        }
    }

    [[nodiscard]] V product(u32 l, u32 r) const {
        assert(l <= r and r <= size());
        V L{ VM::identity() }, R{ VM::identity() };
        for (l += size(), r += size() ; l < r ; l = parent(l), r = parent(r)) {
            if (l & 1) {
                L = VM::operation(L, m_dat[l++]);
            }
            if (r & 1) {
                R = VM::operation(m_dat[--r], R);
            }
        }
        return VM::operation(L, R);
    }

    template <class Function>
    [[nodiscard]] usize maxRight(usize l, const Function& f) {
        assert(l < size());
        static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
        assert(f(VM::identity()));
        usize res{l}, width{1};
        V prod{ VM::identity() };
        // 現在の見ている頂点の幅をwidthで持つ
        // 境界がある頂点を含む部分木の根を探す
        // (折り返す時は必要以上の幅を持つ根になるが、widthを持っているのでオーバーしない)
        for (l += size() ; res + width <= size() ; l = parent(l), width <<= 1) if (l & 1) {
            if (not f(VM::operation(prod, m_dat[l]))) break; 
            res += width;
            prod = VM::operation(prod, m_dat[l++]);
        }
        // 根から下って、境界を発見する
        while (l = left(l), width >>= 1) {
            if (res + width <= size() and f(VM::operation(prod, m_dat[l]))) {
                res += width;
                prod = VM::operation(prod, m_dat[l++]);
            } 
        }
        return res;
    }

    template <class Function>
    [[nodiscard]] usize minLeft(usize r, const Function& f) const {
        assert(r <= size());
        static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
        assert(f(VM::identity()));
        usize res{r}, width{1};
        V prod{ VM::identity() };
        for (r += size() ; res >= width ; r = parent(r), width <<= 1) if (r & 1) {
            if (not f(VM::operation(m_dat[r - 1], prod))) break;
            res -= width;
            prod = VM::operation(prod, m_dat[--r]);
        }
        while (r = left(r), width >>= 1) {
            if (res >= width and f(VM::operation(m_dat[r - 1], prod))) {
                res -= width;
                prod = VM::operation(m_dat[--r], prod);
            }
        }
        return res;
    }

    friend std::ostream& operator<<(std::ostream& os, const SegmentTree& st) {
        for (usize i{1} ; i < 2 * st.size() ; i++) {
            os << st.m_dat[i] << (i + 1 == 2 * st.size() ? "" : " ");
        }
        return os;
    }

private:

    constexpr u32 left(u32 v) const {
        return v << 1;
    }

    constexpr u32 right(u32 v) const {
        return v << 1 | 1;
    }

    constexpr u32 parent(u32 v) const {
        return v >> 1;
    }

    usize m_n;

    std::vector<V> m_dat;
};

} // namespace zawa
#line 2 "Src/Algebra/Monoid/RollingHashMonoid.hpp"

#line 2 "Src/Number/Mersenne61ModInt.hpp"

#line 4 "Src/Number/Mersenne61ModInt.hpp"

namespace zawa {

// @reference: https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
class Mersenne61ModInt {
public:
    using Value = u64;
private:
    static constexpr Value MOD{(1ull << 61) - 1}; // == MASK61
    static constexpr Value MASK30{(1ull << 30) - 1};
    static constexpr Value MASK31{(1ull << 31) - 1};
    Value v_{};
public:
    constexpr Mersenne61ModInt() {}

    static constexpr Value Mod() noexcept {
        return MOD;
    }
    static constexpr Value Modulo(const Value& v) noexcept {
        Value res{(v >> 61) + (v & MOD)};
        res = (res >= MOD ? res - MOD : res);
        return res;
    }
    static constexpr Value UnsafeMul(const Value& a, const Value& b) noexcept {
        Value fa{a >> 31}, fb{b >> 31};
        Value ba{a & MASK31}, bb{b & MASK31};
        Value mid{fa * bb + fb * ba};
        return Value{2}*fa*fb + (mid >> 30) + ((mid & MASK30) << 31) + ba*bb;
    }
    static constexpr Value Mul(const Value& a, const Value& b) noexcept {
        return Modulo(UnsafeMul(a, b));
    }
};

};
#line 5 "Src/Algebra/Monoid/RollingHashMonoid.hpp"

#include <random>
#line 8 "Src/Algebra/Monoid/RollingHashMonoid.hpp"

namespace zawa {

struct RollingHashMonoidData {
    using Value = Mersenne61ModInt::Value;
    using Size = usize;
    static Value base;
    Value hash{}, pow{1};
    usize len{};

    constexpr RollingHashMonoidData() = default;
    constexpr RollingHashMonoidData(Value h, Value p, usize l) : hash{h}, pow{p}, len{l} {}
    template <class T>
    constexpr RollingHashMonoidData(const T& v) 
        : hash{static_cast<Value>(v)}, pow{base}, len{1} {}
    // RollingHashMonoidData(const RollingHashMonoidData& data)
    //     : hash{data.hash}, pow{data.pow}, len{data.len} {}
    
    static Value randomValue(const Value& sigma) {
        return std::mt19937{std::random_device{}()}() % (Mersenne61ModInt::Mod() - sigma) + sigma + 1;
    }

    friend constexpr bool operator==(const RollingHashMonoidData& lhs, const RollingHashMonoidData& rhs) {
        return lhs.hash == rhs.hash and lhs.len == rhs.len;
    }
    friend constexpr bool operator!=(const RollingHashMonoidData& lhs, const RollingHashMonoidData& rhs) {
        return lhs.hash != rhs.hash or lhs.len != rhs.len;
    }
};

struct RollingHashMonoid {
    using Modulo = Mersenne61ModInt;
    using Element = RollingHashMonoidData;
    static constexpr Element identity() noexcept {
        return Element{};
    }
    static constexpr Element operation(const Element& lhs, const Element& rhs) noexcept {
        return Element{
            Modulo::Modulo(Modulo::UnsafeMul(lhs.hash, rhs.pow) + rhs.hash),
            Modulo::Mul(lhs.pow, rhs.pow),
            lhs.len + rhs.len
        };
    }
};

} // namespace zawa
#line 7 "Test/AtCoder/abc331_f.test.cpp"
using namespace zawa;

#line 12 "Test/AtCoder/abc331_f.test.cpp"
#include <string>
#line 14 "Test/AtCoder/abc331_f.test.cpp"

using Value = RollingHashMonoidData::Value;

Value RollingHashMonoidData::base{
    RollingHashMonoidData::randomValue(26)
};

int main() {
#ifdef ATCODER
    SetFastIO();
    int N, Q; 
    std::cin >> N >> Q;
    std::string S; 
    std::cin >> S;

    std::vector<RollingHashMonoidData> init(N), tini(N); 
    for (int i{} ; i < N ; i++) {
        init[i] = RollingHashMonoidData{S[i]};
        tini[N - i - 1] = RollingHashMonoidData{S[i]};
    }
    SegmentTree<RollingHashMonoid> seg{init}, ges{tini};
    while(Q--) {
        int t; 
        std::cin >> t;
        if (t == 1) {
            int x; 
            std::cin >> x;
            x--;
            char c; 
            std::cin >> c;
            seg.set(x, RollingHashMonoidData{c});
            ges.set(N - x - 1, RollingHashMonoidData{c});
        }
        else if (t == 2) {
            int l, r; std::cin >> l >> r;
            l--;
            bool ans{seg.product(l, r) == ges.product(N - r, N - l)};
            std::cout << (ans ? "Yes" : "No") << '\n';
        }
        else {
            assert(!"input fail");
        }
    }
#else
    std::cout << "Hello World\n";
#endif
}
Back to top page