This documentation is automatically generated by online-judge-tools/verification-helper
// #define PROBLEM "https://atcoder.jp/contests/abc371/tasks/abc371_f"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#include "../../Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
/*
* AtCoder Beginner Contest 371 F - Takahashi in Narrow Road
* https://atcoder.jp/contests/abc371/submissions/67058774
*/
#include <iostream>
const int INF = (int)1e9;
struct VD {
long long sum = 0;
int cnt = 0, min = INF, max = -INF;
VD() = default;
VD(int v) : sum{v}, cnt{1}, min{v}, max{v} {}
VD(int v, int c) : sum{(long long)v * c}, cnt{c}, min{v}, max{v} {}
VD(long long s, int c, int mn, int mx) : sum{s}, cnt{c}, min{mn}, max{mx} {}
};
struct VM {
using Element = VD;
static Element identity() { return VD{}; }
static Element operation(Element L, Element R) {
L.sum += R.sum;
L.cnt += R.cnt;
L.min = std::min(L.min, R.min);
L.max = std::max(L.max, R.max);
return L;
}
};
struct OM {
using Element = int;
static Element identity() { return INF; }
static Element operation(Element L, Element R) {
return R == INF ? L : R;
}
};
struct S {
using ValueMonoid = VM;
using OperatorMonoid = OM;
static VM::Element mapping(VM::Element L, OM::Element R) {
if (R == INF) return L;
return VM::Element{R, L.cnt};
}
};
long long solve() {
int N;
std::cin >> N;
std::vector<VD> init(N);
for (int i = 0 ; i < N ; i++) {
int x;
std::cin >> x;
init[i] = VD{x - i};
}
zawa::LazySegmentTree<S> seg{init};
int Q;
std::cin >> Q;
long long ans = 0;
while (Q--) {
int T, G;
std::cin >> T >> G;
T--;
G -= T;
const int cur = seg[T].min;
if (G < cur) {
const auto l = seg.minLeft(T + 1, [&](const VD& v) { return G <= v.min; });
const auto prod = seg.product(l, T + 1);
ans += prod.sum - (long long)G * prod.cnt;
seg.operation(l, T + 1, G);
}
else if (cur < G) {
const auto r = seg.maxRight(T, [&](const VD& v) { return v.max <= G; });
const auto prod = seg.product(T, r);
ans += (long long)G * prod.cnt - prod.sum;
seg.operation(T, r, G);
}
}
return ans;
}
int main() {
#ifdef ATCODER
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << solve() << '\n';
#else
std::cout << "Hello World\n";
#endif
}
#line 1 "Test/AtCoder/abc371_f.test.cpp"
// #define PROBLEM "https://atcoder.jp/contests/abc371/tasks/abc371_f"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#line 2 "Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept MonoidWithAction = requires {
requires Monoid<typename T::ValueMonoid>;
requires Monoid<typename T::OperatorMonoid>;
{ T::mapping(
std::declval<typename T::ValueMonoid::Element>(),
std::declval<typename T::OperatorMonoid::Element>()
) } -> std::same_as<typename T::ValueMonoid::Element>;
};
} // namespace concepts
} // namespace zawa
#line 5 "Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
#include <algorithm>
#include <bit>
#include <cassert>
#include <ranges>
#include <tuple>
#include <vector>
namespace zawa {
template <concepts::MonoidWithAction S>
class LazySegmentTree {
public:
using VM = S::ValueMonoid;
using V = typename VM::Element;
using OM = S::OperatorMonoid;
using O = typename OM::Element;
LazySegmentTree() = default;
explicit LazySegmentTree(usize n)
: m_n{n}, m_sz{1u << (std::bit_width(n))}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {}
explicit LazySegmentTree(const std::vector<V>& a)
: m_n{a.size()}, m_sz{1u << (std::bit_width(a.size()))}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {
std::ranges::copy(a, m_dat.begin() + inner_size());
for (usize i = inner_size() ; --i ; ) recalc(i);
}
[[nodiscard]] inline usize size() const noexcept {
return m_n;
}
[[nodiscard]] V operator[](usize i) {
assert(i < size());
return get(i, 1, 0, inner_size());
}
[[nodiscard]] V get(usize i) {
return (*this)[i];
}
[[nodiscard]] V product(usize l, usize r) {
assert(l <= r and r <= size());
return product(l, r, 1, 0, inner_size());
}
void operation(usize l, usize r, const O& o) {
assert(l <= r and r <= size());
return operation(l, r, o, 1, 0, inner_size());
}
void assign(usize i, const V& v) {
assert(i < size());
assign(i, v, 1, 0, inner_size());
}
void operation(usize i, const O& o) {
assert(i < size());
operation(i, o, 1, 0, inner_size());
}
private:
using NodeInfo = std::tuple<usize, usize, usize>;
public:
template <class F>
requires std::predicate<F, V>
usize maxRight(usize l, F f) {
assert(l <= size());
if (!f(VM::identity())) return l;
if (l == size()) return size();
std::vector<NodeInfo> ranges;
partition_range(l, size(), ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges) {
if (!f(VM::operation(prod, m_dat[nd]))) {
return maxRight(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return size();
}
template <class F>
requires std::predicate<F, V>
usize minLeft(usize r, F f) {
assert(r <= size());
if (!f(VM::identity())) return r;
if (!r) return 0;
std::vector<NodeInfo> ranges;
partition_range(0, r, ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges | std::views::reverse) {
if (!f(VM::operation(m_dat[nd], prod))) {
return minLeft(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return 0;
}
private:
usize m_n{}, m_sz{};
std::vector<V> m_dat;
std::vector<O> m_lazy;
inline usize inner_size() const noexcept {
return m_sz;
}
void recalc(usize nd) {
// assert(nd < inner_size());
m_dat[nd] = VM::operation(m_dat[nd << 1 | 0], m_dat[nd << 1 | 1]);
}
void propagate(usize nd) {
// assert(nd < inner_size());
for (usize ch : {nd << 1 | 0, nd << 1 | 1}) {
m_dat[ch] = S::mapping(m_dat[ch], m_lazy[nd]);
m_lazy[ch] = OM::operation(m_lazy[ch], m_lazy[nd]);
}
m_lazy[nd] = OM::identity();
}
V product(usize ql, usize qr, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return VM::identity();
if (ql <= nl and nr <= qr) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return VM::operation(
product(ql, qr, nd << 1 | 0, nl, m),
product(ql, qr, nd << 1 | 1, m, nr)
);
}
V get(usize i, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return i < m ? get(i, nd << 1 | 0, nl, m) : get(i, nd << 1 | 1, m, nr);
}
void operation(usize ql, usize qr, const O& o, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return;
if (ql <= nl and nr <= qr) {
m_dat[nd] = S::mapping(m_dat[nd], o);
m_lazy[nd] = OM::operation(m_lazy[nd], o);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
operation(ql, qr, o, nd << 1 | 0, nl, m);
operation(ql, qr, o, nd << 1 | 1, m, nr);
recalc(nd);
}
void operation(usize i, const O& o, usize nd, usize nl, usize nr) {
if (nl == i and i + 1 == nr) {
m_dat[nd] = S::mapping(m_dat[nd], o);
// 葉頂点なので、lazyへのopは不要
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? operation(i, o, nd << 1 | 0, nl, m) : operation(i, o, nd << 1 | 1, m, nr);
recalc(nd);
}
void assign(usize i, const V& v, usize nd, usize nl, usize nr) {
if (nl == i and i + 1 == nr) {
m_dat[nd] = v;
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? assign(i, v, nd << 1 | 0, nl, m) : assign(i, v, nd << 1 | 1, m, nr);
recalc(nd);
}
void partition_range(usize ql, usize qr, std::vector<NodeInfo>& res, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return;
if (ql <= nl and nr <= qr) {
res.emplace_back(nd, nl, nr);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
partition_range(ql, qr, res, nd << 1 | 0, nl, m);
partition_range(ql, qr, res, nd << 1 | 1, m, nr);
}
template <class F>
requires std::predicate<F, V>
usize maxRight(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nl;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(prod, m_dat[lch])) ?
maxRight(f, VM::operation(prod, m_dat[lch]), rch, m, nr) : maxRight(f, prod, lch, nl, m);
}
template <class F>
requires std::predicate<F, V>
usize minLeft(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nr;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(m_dat[rch], prod)) ?
minLeft(f, VM::operation(m_dat[rch], prod), lch, nl, m) : minLeft(f, prod, rch, m, nr);
}
};
} // namespace zawa
#line 5 "Test/AtCoder/abc371_f.test.cpp"
/*
* AtCoder Beginner Contest 371 F - Takahashi in Narrow Road
* https://atcoder.jp/contests/abc371/submissions/67058774
*/
#include <iostream>
const int INF = (int)1e9;
struct VD {
long long sum = 0;
int cnt = 0, min = INF, max = -INF;
VD() = default;
VD(int v) : sum{v}, cnt{1}, min{v}, max{v} {}
VD(int v, int c) : sum{(long long)v * c}, cnt{c}, min{v}, max{v} {}
VD(long long s, int c, int mn, int mx) : sum{s}, cnt{c}, min{mn}, max{mx} {}
};
struct VM {
using Element = VD;
static Element identity() { return VD{}; }
static Element operation(Element L, Element R) {
L.sum += R.sum;
L.cnt += R.cnt;
L.min = std::min(L.min, R.min);
L.max = std::max(L.max, R.max);
return L;
}
};
struct OM {
using Element = int;
static Element identity() { return INF; }
static Element operation(Element L, Element R) {
return R == INF ? L : R;
}
};
struct S {
using ValueMonoid = VM;
using OperatorMonoid = OM;
static VM::Element mapping(VM::Element L, OM::Element R) {
if (R == INF) return L;
return VM::Element{R, L.cnt};
}
};
long long solve() {
int N;
std::cin >> N;
std::vector<VD> init(N);
for (int i = 0 ; i < N ; i++) {
int x;
std::cin >> x;
init[i] = VD{x - i};
}
zawa::LazySegmentTree<S> seg{init};
int Q;
std::cin >> Q;
long long ans = 0;
while (Q--) {
int T, G;
std::cin >> T >> G;
T--;
G -= T;
const int cur = seg[T].min;
if (G < cur) {
const auto l = seg.minLeft(T + 1, [&](const VD& v) { return G <= v.min; });
const auto prod = seg.product(l, T + 1);
ans += prod.sum - (long long)G * prod.cnt;
seg.operation(l, T + 1, G);
}
else if (cur < G) {
const auto r = seg.maxRight(T, [&](const VD& v) { return v.max <= G; });
const auto prod = seg.product(T, r);
ans += (long long)G * prod.cnt - prod.sum;
seg.operation(T, r, G);
}
}
return ans;
}
int main() {
#ifdef ATCODER
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << solve() << '\n';
#else
std::cout << "Hello World\n";
#endif
}