This documentation is automatically generated by online-judge-tools/verification-helper
// #define PROBLEM "https://codeforces.com/contest/1872/problem/E"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
/*
* CF895 (Div.3) - E Data Structures Fan
* https://codeforces.com/contest/1872/submission/325973113
*/
#include "../../Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
#include <iostream>
struct vDat {
int one{};
int zero{};
vDat() {}
vDat(int o, int z) : one{o}, zero{z} {}
vDat flip() const { return vDat{ zero, one }; }
};
struct vM {
using Element = vDat;
static vDat identity() {
return vDat{};
}
static vDat operation(const vDat& a, const vDat& b) {
return vDat{
a.one ^ b.one, a.zero ^ b.zero
};
}
};
struct oM {
using Element = bool;
static bool identity() {
return false;
}
static bool operation(bool a, bool b) {
return a ^ b;
}
};
struct Structure {
using ValueMonoid = vM;
using OperatorMonoid = oM;
static vDat mapping(const vDat& a, bool b) {
return (b ? a.flip() : a);
}
};
#include <vector>
#include <cassert>
void testCase() {
using namespace zawa;
int n; std::cin >> n;
std::vector<int> a(n);
for (auto& x : a) std::cin >> x;
std::vector<vDat> init(n);
for (int i{} ; i < n ; i++) {
char c; std::cin >> c;
if (c == '0') {
init[i].zero = a[i];
}
else if (c == '1') {
init[i].one = a[i];
}
else {
assert(false);
}
}
LazySegmentTree<Structure> seg(init);
std::vector<int> anses;
int q; std::cin >> q;
for (int _{} ; _ < q ; _++) {
int t; std::cin >> t;
if (t == 1) {
int l, r; std::cin >> l >> r;
l--;
seg.operation(l, r, true);
}
else if (t == 2) {
int v; std::cin >> v;
vDat ans{ seg.product(0, n) };
anses.emplace_back((v ? ans.one : ans.zero));
}
}
int s{ (int)anses.size() };
for (int i{} ; i < s ; i++) {
std::cout << anses[i] << (i + 1 == s ? '\n' : ' ');
}
}
void solve() {
using namespace zawa;
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
int t; std::cin >> t;
for (int _{} ; _ < t ; _++) {
testCase();
}
}
int main() {
#ifdef ONLINE_JUDGE
solve();
#else
std::cout << "Hello World" << std::endl;
#endif
}
#line 1 "Test/CF/CF895-E.test.cpp"
// #define PROBLEM "https://codeforces.com/contest/1872/problem/E"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
/*
* CF895 (Div.3) - E Data Structures Fan
* https://codeforces.com/contest/1872/submission/325973113
*/
#line 2 "Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/DataStructure/SegmentTree/SegmentTreeConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept MonoidWithAction = requires {
requires Monoid<typename T::ValueMonoid>;
requires Monoid<typename T::OperatorMonoid>;
{ T::mapping(
std::declval<typename T::ValueMonoid::Element>(),
std::declval<typename T::OperatorMonoid::Element>()
) } -> std::same_as<typename T::ValueMonoid::Element>;
};
} // namespace concepts
} // namespace zawa
#line 5 "Src/DataStructure/SegmentTree/LazySegmentTree.hpp"
#include <algorithm>
#include <bit>
#include <cassert>
#include <ranges>
#include <tuple>
#include <vector>
namespace zawa {
template <concepts::MonoidWithAction S>
class LazySegmentTree {
public:
using VM = S::ValueMonoid;
using V = typename VM::Element;
using OM = S::OperatorMonoid;
using O = typename OM::Element;
LazySegmentTree() = default;
explicit LazySegmentTree(usize n)
: m_n{n}, m_sz{1u << (std::bit_width(n))}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {}
explicit LazySegmentTree(const std::vector<V>& a)
: m_n{a.size()}, m_sz{1u << (std::bit_width(a.size()))}, m_dat(m_sz << 1, VM::identity()), m_lazy(m_sz << 1, OM::identity()) {
std::ranges::copy(a, m_dat.begin() + inner_size());
for (usize i = inner_size() ; --i ; ) recalc(i);
}
[[nodiscard]] inline usize size() const noexcept {
return m_n;
}
[[nodiscard]] V operator[](usize i) {
assert(i < size());
return get(i, 1, 0, inner_size());
}
[[nodiscard]] V get(usize i) {
return (*this)[i];
}
[[nodiscard]] V product(usize l, usize r) {
assert(l <= r and r <= size());
return product(l, r, 1, 0, inner_size());
}
void operation(usize l, usize r, const O& o) {
assert(l <= r and r <= size());
return operation(l, r, o, 1, 0, inner_size());
}
void assign(usize i, const V& v) {
assert(i < size());
assign(i, v, 1, 0, inner_size());
}
void operation(usize i, const O& o) {
assert(i < size());
operation(i, o, 1, 0, inner_size());
}
private:
using NodeInfo = std::tuple<usize, usize, usize>;
public:
template <class F>
requires std::predicate<F, V>
usize maxRight(usize l, F f) {
assert(l <= size());
if (!f(VM::identity())) return l;
if (l == size()) return size();
std::vector<NodeInfo> ranges;
partition_range(l, size(), ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges) {
if (!f(VM::operation(prod, m_dat[nd]))) {
return maxRight(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return size();
}
template <class F>
requires std::predicate<F, V>
usize minLeft(usize r, F f) {
assert(r <= size());
if (!f(VM::identity())) return r;
if (!r) return 0;
std::vector<NodeInfo> ranges;
partition_range(0, r, ranges, 1, 0, inner_size());
V prod = VM::identity();
for (auto [nd, nl, nr] : ranges | std::views::reverse) {
if (!f(VM::operation(m_dat[nd], prod))) {
return minLeft(f, prod, nd, nl, nr);
}
else {
prod = VM::operation(prod, m_dat[nd]);
}
}
return 0;
}
private:
usize m_n{}, m_sz{};
std::vector<V> m_dat;
std::vector<O> m_lazy;
inline usize inner_size() const noexcept {
return m_sz;
}
void recalc(usize nd) {
// assert(nd < inner_size());
m_dat[nd] = VM::operation(m_dat[nd << 1 | 0], m_dat[nd << 1 | 1]);
}
void propagate(usize nd) {
// assert(nd < inner_size());
for (usize ch : {nd << 1 | 0, nd << 1 | 1}) {
m_dat[ch] = S::mapping(m_dat[ch], m_lazy[nd]);
m_lazy[ch] = OM::operation(m_lazy[ch], m_lazy[nd]);
}
m_lazy[nd] = OM::identity();
}
V product(usize ql, usize qr, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return VM::identity();
if (ql <= nl and nr <= qr) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return VM::operation(
product(ql, qr, nd << 1 | 0, nl, m),
product(ql, qr, nd << 1 | 1, m, nr)
);
}
V get(usize i, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return m_dat[nd];
propagate(nd);
const usize m = (nl + nr) >> 1;
return i < m ? get(i, nd << 1 | 0, nl, m) : get(i, nd << 1 | 1, m, nr);
}
void operation(usize ql, usize qr, const O& o, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return;
if (ql <= nl and nr <= qr) {
m_dat[nd] = S::mapping(m_dat[nd], o);
m_lazy[nd] = OM::operation(m_lazy[nd], o);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
operation(ql, qr, o, nd << 1 | 0, nl, m);
operation(ql, qr, o, nd << 1 | 1, m, nr);
recalc(nd);
}
void operation(usize i, const O& o, usize nd, usize nl, usize nr) {
if (nl == i and i + 1 == nr) {
m_dat[nd] = S::mapping(m_dat[nd], o);
// 葉頂点なので、lazyへのopは不要
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? operation(i, o, nd << 1 | 0, nl, m) : operation(i, o, nd << 1 | 1, m, nr);
recalc(nd);
}
void assign(usize i, const V& v, usize nd, usize nl, usize nr) {
if (nl == i and i + 1 == nr) {
m_dat[nd] = v;
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
i < m ? assign(i, v, nd << 1 | 0, nl, m) : assign(i, v, nd << 1 | 1, m, nr);
recalc(nd);
}
void partition_range(usize ql, usize qr, std::vector<NodeInfo>& res, usize nd, usize nl, usize nr) {
if (qr <= nl or nr <= ql) return;
if (ql <= nl and nr <= qr) {
res.emplace_back(nd, nl, nr);
return;
}
propagate(nd);
const usize m = (nl + nr) >> 1;
partition_range(ql, qr, res, nd << 1 | 0, nl, m);
partition_range(ql, qr, res, nd << 1 | 1, m, nr);
}
template <class F>
requires std::predicate<F, V>
usize maxRight(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nl;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(prod, m_dat[lch])) ?
maxRight(f, VM::operation(prod, m_dat[lch]), rch, m, nr) : maxRight(f, prod, lch, nl, m);
}
template <class F>
requires std::predicate<F, V>
usize minLeft(F f, const V& prod, usize nd, usize nl, usize nr) {
if (nd >= inner_size()) return nr;
propagate(nd);
const usize m = (nl + nr) >> 1, lch = nd << 1 | 0, rch = nd << 1 | 1;
return f(VM::operation(m_dat[rch], prod)) ?
minLeft(f, VM::operation(m_dat[rch], prod), lch, nl, m) : minLeft(f, prod, rch, m, nr);
}
};
} // namespace zawa
#line 10 "Test/CF/CF895-E.test.cpp"
#include <iostream>
struct vDat {
int one{};
int zero{};
vDat() {}
vDat(int o, int z) : one{o}, zero{z} {}
vDat flip() const { return vDat{ zero, one }; }
};
struct vM {
using Element = vDat;
static vDat identity() {
return vDat{};
}
static vDat operation(const vDat& a, const vDat& b) {
return vDat{
a.one ^ b.one, a.zero ^ b.zero
};
}
};
struct oM {
using Element = bool;
static bool identity() {
return false;
}
static bool operation(bool a, bool b) {
return a ^ b;
}
};
struct Structure {
using ValueMonoid = vM;
using OperatorMonoid = oM;
static vDat mapping(const vDat& a, bool b) {
return (b ? a.flip() : a);
}
};
#line 53 "Test/CF/CF895-E.test.cpp"
void testCase() {
using namespace zawa;
int n; std::cin >> n;
std::vector<int> a(n);
for (auto& x : a) std::cin >> x;
std::vector<vDat> init(n);
for (int i{} ; i < n ; i++) {
char c; std::cin >> c;
if (c == '0') {
init[i].zero = a[i];
}
else if (c == '1') {
init[i].one = a[i];
}
else {
assert(false);
}
}
LazySegmentTree<Structure> seg(init);
std::vector<int> anses;
int q; std::cin >> q;
for (int _{} ; _ < q ; _++) {
int t; std::cin >> t;
if (t == 1) {
int l, r; std::cin >> l >> r;
l--;
seg.operation(l, r, true);
}
else if (t == 2) {
int v; std::cin >> v;
vDat ans{ seg.product(0, n) };
anses.emplace_back((v ? ans.one : ans.zero));
}
}
int s{ (int)anses.size() };
for (int i{} ; i < s ; i++) {
std::cout << anses[i] << (i + 1 == s ? '\n' : ' ');
}
}
void solve() {
using namespace zawa;
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
int t; std::cin >> t;
for (int _{} ; _ < t ; _++) {
testCase();
}
}
int main() {
#ifdef ONLINE_JUDGE
solve();
#else
std::cout << "Hello World" << std::endl;
#endif
}