This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/count_points_in_triangle"
#include "../../Src/GeometryZ2/Contain/NaiveCountPointsInTriangles.hpp"
#include <iostream>
using namespace zawa;
using namespace geometryZ2;
int main() {
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
int N;
std::cin >> N;
PointCloud A(N);
for (auto& a : A) std::cin >> a;
int M;
std::cin >> M;
PointCloud B(M);
for (auto& a : B) std::cin >> a;
NaiveCountPointsInTriangles sv(A, B);
int Q;
std::cin >> Q;
while (Q--) {
int a, b, c;
std::cin >> a >> b >> c;
std::cout << sv(a, b, c) << '\n';
}
}
#line 1 "Test/LC/naive_count_points_in_triangle.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/count_points_in_triangle"
#line 2 "Src/GeometryZ2/Contain/NaiveCountPointsInTriangles.hpp"
#line 2 "Src/GeometryZ2/PointCloud.hpp"
#line 2 "Src/GeometryZ2/Point.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/GeometryZ2/Zahlen.hpp"
#line 4 "Src/GeometryZ2/Zahlen.hpp"
#include <cassert>
namespace zawa {
namespace geometryZ2 {
using Zahlen = i64;
namespace internal {
constexpr i32 positive{1};
constexpr i32 zero{0};
constexpr i32 negative{-1};
} // namespace internal
constexpr i32 Sign(Zahlen value) {
if (value < 0) return internal::negative;
if (value > 0) return internal::positive;
return internal::zero;
}
constexpr bool Positive(Zahlen value) {
return Sign(value) == internal::positive;
}
constexpr bool Zero(Zahlen value) {
return Sign(value) == internal::zero;
}
constexpr bool Negative(Zahlen value) {
return Sign(value) == internal::negative;
}
constexpr Zahlen Abs(Zahlen value) {
return (value > 0 ? value : -value);
}
constexpr Zahlen Square(Zahlen value) {
return value * value;
}
} // namespace geometryZ2
} // namespace zawa
#line 5 "Src/GeometryZ2/Point.hpp"
#include <algorithm>
#include <iostream>
#line 9 "Src/GeometryZ2/Point.hpp"
#include <limits>
namespace zawa {
namespace geometryZ2 {
class Point {
private:
Zahlen x_{}, y_{};
static constexpr i32 origin{0};
static constexpr i32 firstQuadrant{1};
static constexpr i32 secondQuadrant{2};
static constexpr i32 thirdQuadrant{-2};
static constexpr i32 forthQuadrant{-1};
public:
/* constructor */
Point() = default;
Point(const Point& p) : x_{p.x()}, y_{p.y()} {}
Point(Zahlen x, Zahlen y) : x_{x}, y_{y} {}
/* getter setter */
Zahlen& x() {
return x_;
}
const Zahlen& x() const {
return x_;
}
Zahlen& y() {
return y_;
}
const Zahlen& y() const {
return y_;
}
/* operator */
Point& operator=(const Point& p) {
x() = p.x();
y() = p.y();
return *this;
}
Point& operator+=(const Point& p) {
x() += p.x();
y() += p.y();
return *this;
}
friend Point operator+(const Point& p0, const Point& p1) {
return Point{p0} += p1;
}
Point& operator-=(const Point& p) {
x() -= p.x();
y() -= p.y();
return *this;
}
friend Point operator-(const Point& p0, const Point& p1) {
return Point{p0} -= p1;
}
Point& operator*=(Zahlen k) {
x() *= k;
y() *= k;
return *this;
}
friend Point operator*(const Point& p, Zahlen k) {
return Point{p} *= k;
}
friend Point operator*(Zahlen k, const Point& p) {
return Point{p} *= k;
}
Point& operator/=(Zahlen k) {
assert(k);
assert(x() % k == 0);
assert(y() % k == 0);
x() /= k;
y() /= k;
return *this;
}
friend Point operator/(const Point& p, Zahlen k) {
return Point{p} /= k;
}
friend bool operator==(const Point& p0, const Point& p1) {
return p0.x() == p1.x() and p0.y() == p1.y();
}
friend bool operator!=(const Point& p0, const Point& p1) {
return p0.x() != p1.x() or p0.y() != p1.y();
}
friend bool operator<(const Point& p0, const Point& p1) {
if (p0.x() != p1.x()) return p0.x() < p1.x();
else return p0.y() < p1.y();
}
friend bool operator<=(const Point& p0, const Point& p1) {
return (p0 < p1) or (p0 == p1);
}
friend bool operator>(const Point& p0, const Point& p1) {
if (p0.x() != p1.x()) return p0.x() > p1.x();
else return p0.y() > p1.y();
}
friend bool operator>=(const Point& p0, const Point& p1) {
return (p0 > p1) or (p0 == p1);
}
friend std::istream& operator>>(std::istream& is, Point& p) {
is >> p.x() >> p.y();
return is;
}
friend std::ostream& operator<<(std::ostream& os, const Point& p) {
os << '(' << p.x() << ',' << p.y() << ')';
return os;
}
/* member function */
Zahlen normSquare() const {
return Square(x()) + Square(y());
}
bool isNormSquareOver(Zahlen d) const {
assert(!Negative(d));
auto [mn, mx]{std::minmax({ Abs(x()), Abs(y()) })};
if (mx and mx > d / mx) {
return true;
}
long long s1{Square(mn)}, s2{Square(mx)};
if (s1 > d - s2) {
return true;
}
return false;
}
bool isNormSquareOverflow() const {
return isNormSquareOver(std::numeric_limits<Zahlen>::max());
}
i32 area() const {
if (x_ == 0 and y_ == 0) return origin;
if (x_ <= 0 and y_ < 0) return thirdQuadrant;
if (x_ > 0 and y_ <= 0) return forthQuadrant;
if (x_ >= 0 and y_ > 0) return firstQuadrant;
return secondQuadrant;
}
/* static member */
static bool ArgComp(const Point& p0, const Point& p1) {
if (p0.area() != p1.area()) return p0.area() < p1.area();
Zahlen cross{Cross(p0, p1)};
return (!Zero(cross) ? Positive(cross) : p0.normSquare() < p1.normSquare());
}
/* friend function */
friend Zahlen Dot(const Point& p0, const Point& p1) {
return p0.x() * p1.x() + p0.y() * p1.y();
}
friend Zahlen Cross(const Point& p0, const Point& p1) {
return p0.x() * p1.y() - p0.y() * p1.x();
}
};
using Vector = Point;
} // namespace geometryZ2
} // namespace zawa
#line 4 "Src/GeometryZ2/PointCloud.hpp"
#line 6 "Src/GeometryZ2/PointCloud.hpp"
#include <vector>
namespace zawa {
namespace geometryZ2 {
using PointCloud = std::vector<Point>;
void ArgSort(PointCloud& p) {
std::sort(p.begin(), p.end(), Point::ArgComp);
}
} // namespace geometryZ2
} // namespace zawa
#line 2 "Src/GeometryZ2/Relation.hpp"
#line 5 "Src/GeometryZ2/Relation.hpp"
namespace zawa {
namespace geometryZ2 {
enum RELATION {
// p0 -> p1 -> p2の順で直線上に並んでいる
ONLINE_FRONT = -2,
// (p1 - p0) -> (p2 - p0)が時計回りになっている
CLOCKWISE = -1,
// p0 -> p2 -> p1の順で直線上に並んでいる
ON_SEGMENT = 0,
// (p1 - p0) -> (p2 - p0)が反時計回りになっている
COUNTER_CLOCKWISE = +1,
// p2 -> p0 -> p1、またはp1 -> p0 -> p2の順で直線上に並んでいる
ONLINE_BACK = +2
};
RELATION Relation(const Point& p0, const Point& p1, const Point& p2) {
Point a{p1 - p0}, b{p2 - p0};
if (Positive(Cross(a, b))) return COUNTER_CLOCKWISE;
if (Negative(Cross(a, b))) return CLOCKWISE;
if (Negative(Dot(a, b))) return ONLINE_BACK;
if (a.normSquare() < b.normSquare()) return ONLINE_FRONT;
return ON_SEGMENT;
};
} // namespace geometryZ2
} // namespace zawa
#line 5 "Src/GeometryZ2/Contain/NaiveCountPointsInTriangles.hpp"
namespace zawa {
namespace geometryZ2 {
class NaiveCountPointsInTriangles {
public:
NaiveCountPointsInTriangles(PointCloud a, PointCloud b) : m_a{std::move(a)}, m_b{std::move(b)} {}
u32 operator()(u32 p, u32 q, u32 r) const {
assert(p < size() and q < size() and r < size());
if (m_a[p] > m_a[q]) std::swap(p, q);
if (m_a[q] > m_a[r]) std::swap(q, r);
if (m_a[p] > m_a[q]) std::swap(p, q);
RELATION R = Relation(m_a[p], m_a[q], m_a[r]);
if (R == RELATION::ONLINE_FRONT or R == RELATION::ONLINE_BACK or R == RELATION::ON_SEGMENT) return 0;
bool ctr = R == RELATION::COUNTER_CLOCKWISE;
u32 res = 0;
for (const Point& i : m_b) {
Zahlen a = Cross(m_a[q] - m_a[p], i - m_a[p]), b = Cross(m_a[r] - m_a[q], i - m_a[q]), c = Cross(m_a[p] - m_a[r], i - m_a[r]);
if (ctr and a > 0 and b > 0 and c > 0) res++;
else if (!ctr and a < 0 and b < 0 and c < 0) res++;
}
return res;
}
inline usize size() const {
return m_a.size();
}
private:
std::vector<Point> m_a, m_b;
};
} // namespace geometryZ2
} // namespace zawa
#line 4 "Test/LC/naive_count_points_in_triangle.test.cpp"
#line 6 "Test/LC/naive_count_points_in_triangle.test.cpp"
using namespace zawa;
using namespace geometryZ2;
int main() {
std::cin.tie(nullptr);
std::cout.tie(nullptr);
std::ios::sync_with_stdio(false);
int N;
std::cin >> N;
PointCloud A(N);
for (auto& a : A) std::cin >> a;
int M;
std::cin >> M;
PointCloud B(M);
for (auto& a : B) std::cin >> a;
NaiveCountPointsInTriangles sv(A, B);
int Q;
std::cin >> Q;
while (Q--) {
int a, b, c;
std::cin >> a >> b >> c;
std::cout << sv(a, b, c) << '\n';
}
}