This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_A"
#include <iostream>
#include "../src/math/modint.hpp"
using mint = zawa::modint<1000000007>;
int main() {
int n, k;
std::cin >> n >> k;
std::cout << mint(k).pow(n).val() << std::endl;
}
#line 1 "test/aoj_dpl_5_a.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_A"
#include <iostream>
#line 1 "src/math/modint.hpp"
namespace zawa {
template<long long mod>
class modint {
private:
long long x;
public:
modint() : x(0) {}
modint(long long x) : x((x % mod + mod) % mod) {}
modint& operator+=(modint p) {
x += p.x;
if (x >= mod) x -= mod;
return *this;
}
modint& operator-=(modint p) {
x += mod - p.x;
if (x >= mod) x -= mod;
return *this;
}
modint& operator*=(modint p) {
x = (1LL * x * p.x % mod);
return *this;
}
modint& operator/=(modint p) {
*this *= p.inv();
return *this;
}
modint operator-() const {
return modint(-x);
}
modint operator+(const modint& p) const {
return modint(*this) += p;
}
modint operator-(const modint& p) const {
return modint(*this) -= p;
}
modint operator*(const modint& p) const {
return modint(*this) *= p;
}
modint operator/(const modint& p) const {
return modint(*this) /= p;
}
long long val() {
return x;
}
modint pow(long long p) {
modint res(1), val(x);
while(p) {
if (p & 1) res *= val;
val *= val;
p >>= 1;
}
return res;
}
modint inv() {
return pow(mod - 2);
}
};
}// namespace zawa
#line 5 "test/aoj_dpl_5_a.test.cpp"
using mint = zawa::modint<1000000007>;
int main() {
int n, k;
std::cin >> n >> k;
std::cout << mint(k).pow(n).val() << std::endl;
}