This documentation is automatically generated by online-judge-tools/verification-helper
#include "Src/DataStructure/PrefixSum1D/StaticRangeSumSolver.hpp"
値の変更が無い長さ $N$ の数列 $A$ 上で区間和クエリを処理します。
詳細は1次元累積和のドキュメントを確認お願いします。
(1) using StaticRangeSumSolver = PrefixSum1D<AdditiveGroup<T>>;
(2) using Ruisekiwa = PrefixSum1D<AdditiveGroup<T>>;
構造体を生やす必要は無く、T
をテンプレート引数で指定するだけです。
(1)、(2)共に同様です。好きな名前の方をお使いください。
#pragma once
#include "../../Algebra/Group/AdditiveGroup.hpp"
#include "./PrefixSum1D.hpp"
namespace zawa {
template <class T>
using StaticRangeSumSolver = PrefixSum1D<AdditiveGroup<T>>;
template <class T>
using Ruisekiwa = PrefixSum1D<AdditiveGroup<T>>;
};
#line 2 "Src/DataStructure/PrefixSum1D/StaticRangeSumSolver.hpp"
#line 2 "Src/Algebra/Group/AdditiveGroup.hpp"
namespace zawa {
template <class T>
class AdditiveGroup {
public:
using Element = T;
static constexpr T identity() noexcept {
return T{};
}
static constexpr T operation(const T& l, const T& r) noexcept {
return l + r;
}
static constexpr T inverse(const T& v) noexcept {
return -v;
}
};
} // namespace zawa
#line 2 "Src/DataStructure/PrefixSum1D/PrefixSum1D.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 4 "Src/DataStructure/PrefixSum1D/PrefixSum1D.hpp"
#include <cmath>
#include <vector>
#include <cassert>
#include <algorithm>
#include <type_traits>
#include <functional>
namespace zawa {
template <class Group>
class PrefixSum1D {
private:
using T = typename Group::Element;
std::vector<T> dat_;
constexpr bool rangeCheck(u32 l, u32 r) const {
return (l <= r and r < dat_.size());
}
public:
PrefixSum1D() = default;
PrefixSum1D(const std::vector<T>& A) : dat_(A.size() + 1, Group::identity()) {
dat_.shrink_to_fit();
for (u32 i = 0 ; i < A.size() ; i++) {
dat_[i + 1] = Group::operation(dat_[i], A[i]);
}
}
inline T operator[](u32 i) const {
assert(i < dat_.size());
return dat_[i];
}
inline usize size() const {
return dat_.size();
}
T product(u32 l, u32 r) const {
assert(rangeCheck(l, r));
return Group::operation(Group::inverse(dat_[l]), dat_[r]);
}
u32 lowerBound(u32 l, u32 r, const T& v) const {
assert(rangeCheck(l, r));
T value = Group::operation(v, dat_[l]);
return std::lower_bound(dat_.begin() + l, dat_.begin() + r, value) - dat_.begin();
}
u32 upperBound(u32 l, u32 r, const T& v) const {
assert(rangeCheck(l, r));
T value = Group::operation(v, dat_[l]);
return std::upper_bound(dat_.begin() + l, dat_.begin() + r, value) - dat_.begin();
}
template <class F>
u32 maxRight(u32 l, const F& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(T)>>, "f must be function bool(T)");
assert(l < dat_.size());
assert(f(Group::identity()));
auto f_ = [&](const T& v) -> bool {
return f(Group::operation(v, Group::inverse(dat_[l])));
};
return std::partition_point(dat_.begin() + l, dat_.end(), f_) - dat_.begin();
}
template <class F>
u32 minLeft(u32 r, const F& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(T)>>, "f must be function bool(T)");
assert(r < dat_.size());
assert(f(Group::identity()));
auto f_ = [&](const T& v) -> bool {
return f(Group::operation(Group::inverse(v), dat_[r]));
};
return dat_.rend() - std::partition_point(dat_.rbegin() + (dat_.size() - r - 1), dat_.rend(), f_) - 1;
}
const auto begin() const {
return dat_.begin();
}
const auto end() const {
return dat_.end();
}
};
} // namespace zawa
#line 5 "Src/DataStructure/PrefixSum1D/StaticRangeSumSolver.hpp"
namespace zawa {
template <class T>
using StaticRangeSumSolver = PrefixSum1D<AdditiveGroup<T>>;
template <class T>
using Ruisekiwa = PrefixSum1D<AdditiveGroup<T>>;
};