This documentation is automatically generated by online-judge-tools/verification-helper
#include "Src/DataStructure/Set/FenwickSet.hpp"
#pragma once
#include "../../Template/TypeAlias.hpp"
#include "../../Number/IntegerDivision.hpp"
#include "../FenwickTree/FenwickTree.hpp"
#include "../../Algebra/Group/AdditiveGroup.hpp"
#include <bit>
#include <cassert>
#include <vector>
#include <optional>
namespace zawa {
class FenwickSet {
public:
FenwickSet() = default;
explicit FenwickSet(usize n)
: m_n{n}, m_m{DivCeil<usize>(n, 64)}, m_dat(m_m), m_fen(m_m), m_all{} {}
constexpr usize maxValue() const {
return m_n;
}
usize size() const {
return m_all;
}
void insert(i32 x) {
assert(0 <= x);
assert(static_cast<usize>(x) < maxValue());
if ((m_dat[x / 64] >> (x % 64)) & 1)
return;
m_dat[x / 64] |= u64{1} << (x % 64);
m_fen.operation(x / 64, 1);
m_all++;
}
void erase(i32 x) {
assert(static_cast<usize>(x) < maxValue());
if ((m_dat[x / 64] >> (x % 64)) & 1) {
m_dat[x / 64] ^= u64{1} << (x % 64);
m_fen.operation(x / 64, -1);
m_all--;
}
}
bool contains(i32 x) const {
assert(static_cast<usize>(x) < maxValue());
return (m_dat[x / 64] >> (x % 64)) & 1;
}
// 1-indexed
std::optional<usize> kth(i32 k) const {
assert(k > 0);
if (static_cast<usize>(k) > m_all)
return std::nullopt;
const usize idx = m_fen.maxRight(0, [&](i32 v) { return v < k; });
i32 sum = m_fen.prefixProduct(idx);
assert(sum < k);
for (usize i = 0 ; i < 64 ; i++)
if ((m_dat[idx] >> i) & 1) {
sum++;
if (sum == k)
return idx * 64 + i;
}
assert(!"Fenwick Set library bug");
return std::nullopt;
}
usize countLessEqual(i32 x) const {
if (x < 0)
return 0;
if (static_cast<usize>(x) >= maxValue())
return m_all;
usize sum = m_fen.prefixProduct(x / 64);
for (i32 i = 0 ; i <= x % 64 ; i++)
sum += (m_dat[x / 64] >> i) & 1;
return sum;
}
std::optional<usize> prevEqual(i32 x) const {
if (countLessEqual(x) == 0)
return std::nullopt;
for (usize i = x % 64 + 1 ; i-- ; )
if ((m_dat[x / 64] >> i) & 1)
return (x / 64) * 64 + i;
const usize idx = m_fen.minLeft(x / 64, [](i32 v) { return v <= 0; });
for (usize i = 64 ; i-- ; )
if ((m_dat[idx] >> i) & 1)
return idx * 64 + i;
assert(!"Fenwick Set library bug");
return std::nullopt;
}
std::optional<usize> nextEqual(i32 x) const {
if (m_all == countLessEqual(x - 1))
return std::nullopt;
for (usize i = x % 64 ; i < 64 ; i++)
if ((m_dat[x / 64] >> i) & 1)
return (x / 64) * 64 + i;
const usize idx = m_fen.maxRight(x / 64 + 1, [](i32 v) { return v <= 0; });
for (usize i = 0 ; i < 64 ; i++)
if ((m_dat[idx] >> i) & 1)
return idx * 64 + i;
assert(!"Fenwick Set library bug");
return std::nullopt;
}
private:
usize m_n{}, m_m{};
std::vector<u64> m_dat;
FenwickTree<AdditiveGroup<i32>> m_fen;
usize m_all{0};
};
} // namespace zawa
#line 2 "Src/DataStructure/Set/FenwickSet.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 2 "Src/Number/IntegerDivision.hpp"
#include <type_traits>
#include <cassert>
namespace zawa {
template <class T>
constexpr T DivFloor(T a, T b) {
static_assert(std::is_integral_v<T>, "DivFloor argument must be Integer");
assert(b != T{});
if constexpr (std::is_unsigned_v<T>) {
return a / b;
}
else {
if (b < 0) {
a *= -1;
b *= -1;
}
return (a >= 0 ? a / b : (a - b + 1) / b);
}
}
template <class T>
constexpr T DivCeil(T a, T b) {
static_assert(std::is_integral_v<T>, "DivCeil argument must be Integer");
assert(b != T{});
if constexpr (std::is_unsigned_v<T>) {
return (a + b - 1) / b;
}
else {
if (b < 0) {
a *= -1;
b *= -1;
}
return (a >= 0 ? (a + b - 1) / b : a / b);
}
}
} // namespace zawa
#line 2 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#line 2 "Src/Algebra/Group/GroupConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/Algebra/Group/GroupConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Inversible = requires {
typename T::Element;
{ T::inverse(std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
template <class T>
concept Group = Monoid<T> and Inversible<T>;
} // namespace Concept
} // namespace zawa
#line 5 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#include <vector>
#line 8 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#include <ostream>
#include <functional>
#line 11 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
namespace zawa {
template <concepts::Monoid Monoid>
class FenwickTree {
public:
using VM = Monoid;
using V = typename VM::Element;
FenwickTree() = default;
explicit FenwickTree(usize n) : m_n{ n }, m_bitwidth{ std::__lg(n) + 1 }, m_a(n, VM::identity()), m_dat(n + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
}
explicit FenwickTree(const std::vector<V>& a) : m_n{ a.size() }, m_bitwidth{ std::__lg(a.size()) + 1 }, m_a(a), m_dat(a.size() + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
for (i32 i{} ; i < static_cast<i32>(m_n) ; i++) {
addDat(i, a[i]);
}
}
inline usize size() const noexcept {
return m_n;
}
// return a[i]
const V& get(usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// return a[i]
const V& operator[](usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// a[i] <- a[i] + v
void operation(usize i, const V& v) {
assert(i < size());
addDat(i, v);
m_a[i] = VM::operation(m_a[i], v);
}
// a[i] <- v
void assign(usize i, const V& v) requires concepts::Inversible<Monoid> {
assert(i < size());
addDat(i, VM::operation(VM::inverse(m_a[i]), v));
m_a[i] = v;
}
// return a[0] + a[1] + ... + a[r - 1]
V prefixProduct(usize r) const {
assert(r <= size());
return product(r);
}
// return a[l] + a[l + 1] ... + a[r - 1]
V product(usize l, usize r) const requires concepts::Inversible<Monoid> {
assert(l <= r and r <= size());
return VM::operation(VM::inverse(product(l)), product(r));
}
template <class Function>
usize maxRight(usize l, const Function& f) const requires concepts::Inversible<Monoid> {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
assert(l <= size());
assert(f(VM::identity()));
V sum{ VM::inverse(product(l)) };
usize r{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ r | (1u << bit) };
if (nxt < m_dat.size() and (nxt <= l or f(VM::operation(sum, m_dat[nxt])))) {
sum = VM::operation(sum, m_dat[nxt]);
r = std::move(nxt);
}
}
assert(l <= r);
return r;
}
template <class Function>
usize minLeft(usize r, const Function& f) const requires concepts::Inversible<Monoid> {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
assert(r <= size());
assert(f(VM::identity()));
V sum{ product(r) };
usize l{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ l | (1u << bit) };
if (nxt <= r and not f(VM::operation(VM::inverse(m_dat[nxt]), sum))) {
sum = VM::operation(VM::inverse(m_dat[nxt]), sum);
l = std::move(nxt);
}
}
assert(l <= r);
return l;
}
// debug print
friend std::ostream& operator<<(std::ostream& os, const FenwickTree& ft) {
for (usize i{} ; i <= ft.size() ; i++) {
os << ft.prefixProduct(i) << (i == ft.size() ? "" : " ");
}
return os;
}
private:
usize m_n{};
usize m_bitwidth{};
std::vector<V> m_a, m_dat;
constexpr i32 lsb(i32 x) const noexcept {
return x & -x;
}
// a[i] <- a[i] + v
void addDat(i32 i, const V& v) {
assert(0 <= i and i < static_cast<i32>(m_n));
for ( i++ ; i < static_cast<i32>(m_dat.size()) ; i += lsb(i)) {
m_dat[i] = VM::operation(m_dat[i], v);
}
}
// return a[0] + a[1] + .. + a[i - 1]
V product(i32 i) const {
assert(0 <= i and i <= static_cast<i32>(m_n));
V res{ VM::identity() };
for ( ; i > 0 ; i -= lsb(i)) {
res = VM::operation(res, m_dat[i]);
}
return res;
}
};
} // namespace zawa
#line 2 "Src/Algebra/Group/AdditiveGroup.hpp"
namespace zawa {
template <class T>
class AdditiveGroup {
public:
using Element = T;
static constexpr T identity() noexcept {
return T{};
}
static constexpr T operation(const T& l, const T& r) noexcept {
return l + r;
}
static constexpr T inverse(const T& v) noexcept {
return -v;
}
};
} // namespace zawa
#line 7 "Src/DataStructure/Set/FenwickSet.hpp"
#include <bit>
#line 11 "Src/DataStructure/Set/FenwickSet.hpp"
#include <optional>
namespace zawa {
class FenwickSet {
public:
FenwickSet() = default;
explicit FenwickSet(usize n)
: m_n{n}, m_m{DivCeil<usize>(n, 64)}, m_dat(m_m), m_fen(m_m), m_all{} {}
constexpr usize maxValue() const {
return m_n;
}
usize size() const {
return m_all;
}
void insert(i32 x) {
assert(0 <= x);
assert(static_cast<usize>(x) < maxValue());
if ((m_dat[x / 64] >> (x % 64)) & 1)
return;
m_dat[x / 64] |= u64{1} << (x % 64);
m_fen.operation(x / 64, 1);
m_all++;
}
void erase(i32 x) {
assert(static_cast<usize>(x) < maxValue());
if ((m_dat[x / 64] >> (x % 64)) & 1) {
m_dat[x / 64] ^= u64{1} << (x % 64);
m_fen.operation(x / 64, -1);
m_all--;
}
}
bool contains(i32 x) const {
assert(static_cast<usize>(x) < maxValue());
return (m_dat[x / 64] >> (x % 64)) & 1;
}
// 1-indexed
std::optional<usize> kth(i32 k) const {
assert(k > 0);
if (static_cast<usize>(k) > m_all)
return std::nullopt;
const usize idx = m_fen.maxRight(0, [&](i32 v) { return v < k; });
i32 sum = m_fen.prefixProduct(idx);
assert(sum < k);
for (usize i = 0 ; i < 64 ; i++)
if ((m_dat[idx] >> i) & 1) {
sum++;
if (sum == k)
return idx * 64 + i;
}
assert(!"Fenwick Set library bug");
return std::nullopt;
}
usize countLessEqual(i32 x) const {
if (x < 0)
return 0;
if (static_cast<usize>(x) >= maxValue())
return m_all;
usize sum = m_fen.prefixProduct(x / 64);
for (i32 i = 0 ; i <= x % 64 ; i++)
sum += (m_dat[x / 64] >> i) & 1;
return sum;
}
std::optional<usize> prevEqual(i32 x) const {
if (countLessEqual(x) == 0)
return std::nullopt;
for (usize i = x % 64 + 1 ; i-- ; )
if ((m_dat[x / 64] >> i) & 1)
return (x / 64) * 64 + i;
const usize idx = m_fen.minLeft(x / 64, [](i32 v) { return v <= 0; });
for (usize i = 64 ; i-- ; )
if ((m_dat[idx] >> i) & 1)
return idx * 64 + i;
assert(!"Fenwick Set library bug");
return std::nullopt;
}
std::optional<usize> nextEqual(i32 x) const {
if (m_all == countLessEqual(x - 1))
return std::nullopt;
for (usize i = x % 64 ; i < 64 ; i++)
if ((m_dat[x / 64] >> i) & 1)
return (x / 64) * 64 + i;
const usize idx = m_fen.maxRight(x / 64 + 1, [](i32 v) { return v <= 0; });
for (usize i = 0 ; i < 64 ; i++)
if ((m_dat[idx] >> i) & 1)
return idx * 64 + i;
assert(!"Fenwick Set library bug");
return std::nullopt;
}
private:
usize m_n{}, m_m{};
std::vector<u64> m_dat;
FenwickTree<AdditiveGroup<i32>> m_fen;
usize m_all{0};
};
} // namespace zawa