This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#include "../../Src/Template/IOSetting.hpp"
#include "../../Src/DataStructure/Mo/Mo.hpp"
#include "../../Src/DataStructure/FenwickTree/FenwickTree.hpp"
#include "../../Src/Sequence/CompressedSequence.hpp"
#include "../../Src/Algebra/Group/AdditiveGroup.hpp"
/*
* AtCoder Beginner Contest 384 G - Abs Sum
* https://atcoder.jp/contests/abc384/submissions/67045346
*/
using namespace zawa;
int N, K, A[100000], B[100000];
struct query {
usize l, r;
};
query Q[10000];
void solve() {
CompressedSequence a{std::vector(A, A + N)}, b{std::vector(B, B + N)};
FenwickTree<AdditiveGroup<int>> ca(a.size()), cb(b.size());
FenwickTree<AdditiveGroup<long long>> sa(a.size()), sb(b.size());
long long ans = 0;
auto addA = [&](int i) -> void {
// std::cout << "addA " << i << std::endl;
int sm = cb.prefixProduct(b[A[i]]);
ans += (long long)A[i] * sm;
ans += (long long)-A[i] * (cb.prefixProduct(b.size()) - sm);
ans += sb.prefixProduct(b.size()) - 2LL * sb.prefixProduct(b[A[i]]);
sa.operation(a.map(i), A[i]);
ca.operation(a.map(i), 1);
};
auto addB = [&](int i) -> void {
// std::cout << "addB " << i << std::endl;
int sm = ca.prefixProduct(a[B[i]]);
ans += (long long)B[i] * sm;
ans += (long long)-B[i] * (ca.prefixProduct(a.size()) - sm);
ans += sa.prefixProduct(a.size()) - 2LL * sa.prefixProduct(a[B[i]]);
sb.operation(b.map(i), B[i]);
cb.operation(b.map(i), 1);
};
auto delA = [&](int i) -> void {
// std::cout << "delA " << i << std::endl;
int sm = cb.prefixProduct(b[A[i]]);
ans -= (long long)A[i] * sm;
ans -= (long long)-A[i] * (cb.prefixProduct(b.size()) - sm);
ans -= sb.prefixProduct(b.size()) - 2LL * sb.prefixProduct(b[A[i]]);
sa.operation(a.map(i), -A[i]);
ca.operation(a.map(i), -1);
};
auto delB = [&](int i) -> void {
// std::cout << "delB " << i << std::endl;
int sm = ca.prefixProduct(a[B[i]]);
ans -= (long long)B[i] * sm;
ans -= (long long)-B[i] * (ca.prefixProduct(a.size()) - sm);
ans -= sa.prefixProduct(a.size()) - 2LL * sa.prefixProduct(a[B[i]]);
sb.operation(b.map(i), -B[i]);
cb.operation(b.map(i), -1);
};
auto eval = [&](int) -> long long {
// std::cout << "eval " << i << std::endl;
return ans;
};
for (long long a : Mo(std::vector<query>(Q, Q + K), addA, addB, delA, delB, eval)) {
std::cout << -a << '\n';
}
}
int main() {
#ifdef ATCODER
SetFastIO();
std::cin >> N;
for (int i = 0 ; i < N ; i++) std::cin >> A[i];
for (int i = 0 ; i < N ; i++) std::cin >> B[i];
std::cin >> K;
for (int i = 0 ; i < K ; i++) {
std::cin >> Q[i].l >> Q[i].r;
}
solve();
#else
std::cout << "Hello World\n";
#endif
}
#line 1 "Test/AtCoder/abc384_g.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#line 2 "Src/Template/IOSetting.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 4 "Src/Template/IOSetting.hpp"
#include <iostream>
#include <iomanip>
namespace zawa {
void SetFastIO() {
std::cin.tie(nullptr)->sync_with_stdio(false);
}
void SetPrecision(u32 dig) {
std::cout << std::fixed << std::setprecision(dig);
}
} // namespace zawa
#line 2 "Src/DataStructure/Mo/Mo.hpp"
#line 4 "Src/DataStructure/Mo/Mo.hpp"
#include <algorithm>
#include <bit>
#include <cassert>
#include <vector>
#include <type_traits>
namespace zawa {
namespace internal {
// reference: https://codeforces.com/blog/entry/61203?#comment-1064868
u64 hilbertOrder(u64 x, u64 y, usize dim) {
const u64 max{(1ull << dim) - 1};
assert(x <= max);
assert(y <= max);
u64 res{};
for (u64 s{1ull << (dim - 1)} ; s ; s >>= 1) {
bool rx{static_cast<bool>(x & s)}, ry{static_cast<bool>(y & s)};
res = (res << 2) | (rx ? ry ? 2 : 1 : ry ? 3 : 0);
if (!rx) {
if (ry) x ^= max, y ^= max;
std::swap(x, y);
}
}
return res;
}
} // namespace internal
template <class T, class AddL, class AddR, class DelL, class DelR, class Eval>
std::vector<typename std::invoke_result_t<Eval, usize>> Mo(std::vector<T> qs, AddL addL, AddR addR, DelL delL, DelR delR, Eval eval, bool reset = false) {
usize log{};
for (const T& lr : qs) log = std::max<usize>(log, std::bit_width(lr.r));
std::vector<std::pair<T, usize>> ord(qs.size());
std::vector<u64> h(qs.size());
for (usize i{} ; i < qs.size() ; i++) {
ord[i] = {qs[i], i};
h[i] = internal::hilbertOrder(qs[i].l, qs[i].r, log);
}
std::sort(ord.begin(), ord.end(), [&](const auto& L, const auto& R) -> bool {
return h[L.second] < h[R.second];
});
std::vector<typename std::invoke_result_t<Eval, usize>> res(qs.size());
usize L{}, R{};
for (const auto& [lr, id] : ord) {
while (R < lr.r) addR(R++);
while (L > lr.l) addL(--L);
while (R > lr.r) delR(--R);
while (L < lr.l) delL(L++);
res[id] = eval(id);
}
if (reset) while (R > L) delR(--R);
return res;
}
} // namespace zawa
#line 2 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#line 2 "Src/Algebra/Group/GroupConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/Algebra/Group/GroupConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Inversible = requires {
typename T::Element;
{ T::inverse(std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
template <class T>
concept Group = Monoid<T> and Inversible<T>;
} // namespace Concept
} // namespace zawa
#line 5 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#line 8 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#include <ostream>
#include <functional>
#line 11 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
namespace zawa {
template <concepts::Group Group>
class FenwickTree {
public:
using VM = Group;
using V = typename VM::Element;
FenwickTree() = default;
explicit FenwickTree(usize n) : m_n{ n }, m_bitwidth{ std::__lg(n) + 1 }, m_a(n), m_dat(n + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
}
explicit FenwickTree(const std::vector<V>& a) : m_n{ a.size() }, m_bitwidth{ std::__lg(a.size()) + 1 }, m_a(a), m_dat(a.size() + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
for (i32 i{} ; i < static_cast<i32>(m_n) ; i++) {
addDat(i, a[i]);
}
}
inline usize size() const noexcept {
return m_n;
}
// return a[i]
const V& get(usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// return a[i]
const V& operator[](usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// a[i] <- a[i] + v
void operation(usize i, const V& v) {
assert(i < size());
addDat(i, v);
m_a[i] = VM::operation(m_a[i], v);
}
// a[i] <- v
void assign(usize i, const V& v) {
assert(i < size());
addDat(i, VM::operation(VM::inverse(m_a[i]), v));
m_a[i] = v;
}
// return a[0] + a[1] + ... + a[r - 1]
V prefixProduct(usize r) const {
assert(r <= size());
return product(r);
}
// return a[l] + a[l + 1] ... + a[r - 1]
V product(usize l, usize r) const {
assert(l <= r and r <= size());
return VM::operation(VM::inverse(product(l)), product(r));
}
template <class Function>
usize maxRight(usize l, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
assert(l < size());
V sum{ VM::inverse(product(l)) };
usize r{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ r | (1u << bit) };
if (nxt < m_dat.size() and f(VM::operation(sum, m_dat[nxt]))) {
sum = VM::operation(sum, m_dat[nxt]);
r = std::move(nxt);
}
}
assert(l <= r);
return r;
}
template <class Function>
usize minLeft(usize r, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
assert(r <= size());
V sum{ product(r) };
usize l{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ l | (1u << bit) };
if (nxt <= r and not f(VM::operation(VM::inverse(m_dat[nxt]), sum))) {
sum = VM::operation(VM::inverse(m_dat[nxt]), sum);
l = std::move(nxt);
}
}
assert(l <= r);
return l;
}
// debug print
friend std::ostream& operator<<(std::ostream& os, const FenwickTree& ft) {
for (usize i{} ; i <= ft.size() ; i++) {
os << ft.prefixProduct(i) << (i == ft.size() ? "" : " ");
}
return os;
}
private:
usize m_n{};
usize m_bitwidth{};
std::vector<V> m_a, m_dat;
constexpr i32 lsb(i32 x) const noexcept {
return x & -x;
}
// a[i] <- a[i] + v
void addDat(i32 i, const V& v) {
assert(0 <= i and i < static_cast<i32>(m_n));
for ( i++ ; i < static_cast<i32>(m_dat.size()) ; i += lsb(i)) {
m_dat[i] = VM::operation(m_dat[i], v);
}
}
// return a[0] + a[1] + .. + a[i - 1]
V product(i32 i) const {
assert(0 <= i and i <= static_cast<i32>(m_n));
V res{ VM::identity() };
for ( ; i > 0 ; i -= lsb(i)) {
res = VM::operation(res, m_dat[i]);
}
return res;
}
};
} // namespace zawa
#line 2 "Src/Sequence/CompressedSequence.hpp"
#line 4 "Src/Sequence/CompressedSequence.hpp"
#line 8 "Src/Sequence/CompressedSequence.hpp"
#include <iterator>
#include <limits>
namespace zawa {
template <class T>
class CompressedSequence {
public:
static constexpr u32 NotFound = std::numeric_limits<u32>::max();
CompressedSequence() = default;
template <class InputIterator>
CompressedSequence(InputIterator first, InputIterator last) : comped_(first, last), f_{} {
std::sort(comped_.begin(), comped_.end());
comped_.erase(std::unique(comped_.begin(), comped_.end()), comped_.end());
comped_.shrink_to_fit();
f_.reserve(std::distance(first, last));
for (auto it{first} ; it != last ; it++) {
f_.emplace_back(std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), *it)));
}
}
CompressedSequence(const std::vector<T>& A) : CompressedSequence(A.begin(), A.end()) {}
inline usize size() const noexcept {
return comped_.size();
}
u32 operator[](const T& v) const {
return std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), v));
}
u32 upper_bound(const T& v) const {
return std::distance(comped_.begin(), std::upper_bound(comped_.begin(), comped_.end(), v));
}
u32 find(const T& v) const {
u32 i = std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), v));
return i == comped_.size() or comped_[i] != v ? NotFound : i;
}
bool contains(const T& v) const {
u32 i = std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), v));
return i < comped_.size() and comped_[i] == v;
}
u32 at(const T& v) const {
u32 res = find(v);
assert(res != NotFound);
return res;
}
inline u32 map(u32 i) const noexcept {
assert(i < f_.size());
return f_[i];
}
inline T inverse(u32 i) const noexcept {
assert(i < size());
return comped_[i];
}
inline std::vector<T> comped() const noexcept {
return comped_;
}
private:
std::vector<T> comped_;
std::vector<u32> f_;
};
} // namespace zawa
#line 2 "Src/Algebra/Group/AdditiveGroup.hpp"
namespace zawa {
template <class T>
class AdditiveGroup {
public:
using Element = T;
static constexpr T identity() noexcept {
return T{};
}
static constexpr T operation(const T& l, const T& r) noexcept {
return l + r;
}
static constexpr T inverse(const T& v) noexcept {
return -v;
}
};
} // namespace zawa
#line 8 "Test/AtCoder/abc384_g.test.cpp"
/*
* AtCoder Beginner Contest 384 G - Abs Sum
* https://atcoder.jp/contests/abc384/submissions/67045346
*/
using namespace zawa;
int N, K, A[100000], B[100000];
struct query {
usize l, r;
};
query Q[10000];
void solve() {
CompressedSequence a{std::vector(A, A + N)}, b{std::vector(B, B + N)};
FenwickTree<AdditiveGroup<int>> ca(a.size()), cb(b.size());
FenwickTree<AdditiveGroup<long long>> sa(a.size()), sb(b.size());
long long ans = 0;
auto addA = [&](int i) -> void {
// std::cout << "addA " << i << std::endl;
int sm = cb.prefixProduct(b[A[i]]);
ans += (long long)A[i] * sm;
ans += (long long)-A[i] * (cb.prefixProduct(b.size()) - sm);
ans += sb.prefixProduct(b.size()) - 2LL * sb.prefixProduct(b[A[i]]);
sa.operation(a.map(i), A[i]);
ca.operation(a.map(i), 1);
};
auto addB = [&](int i) -> void {
// std::cout << "addB " << i << std::endl;
int sm = ca.prefixProduct(a[B[i]]);
ans += (long long)B[i] * sm;
ans += (long long)-B[i] * (ca.prefixProduct(a.size()) - sm);
ans += sa.prefixProduct(a.size()) - 2LL * sa.prefixProduct(a[B[i]]);
sb.operation(b.map(i), B[i]);
cb.operation(b.map(i), 1);
};
auto delA = [&](int i) -> void {
// std::cout << "delA " << i << std::endl;
int sm = cb.prefixProduct(b[A[i]]);
ans -= (long long)A[i] * sm;
ans -= (long long)-A[i] * (cb.prefixProduct(b.size()) - sm);
ans -= sb.prefixProduct(b.size()) - 2LL * sb.prefixProduct(b[A[i]]);
sa.operation(a.map(i), -A[i]);
ca.operation(a.map(i), -1);
};
auto delB = [&](int i) -> void {
// std::cout << "delB " << i << std::endl;
int sm = ca.prefixProduct(a[B[i]]);
ans -= (long long)B[i] * sm;
ans -= (long long)-B[i] * (ca.prefixProduct(a.size()) - sm);
ans -= sa.prefixProduct(a.size()) - 2LL * sa.prefixProduct(a[B[i]]);
sb.operation(b.map(i), -B[i]);
cb.operation(b.map(i), -1);
};
auto eval = [&](int) -> long long {
// std::cout << "eval " << i << std::endl;
return ans;
};
for (long long a : Mo(std::vector<query>(Q, Q + K), addA, addB, delA, delB, eval)) {
std::cout << -a << '\n';
}
}
int main() {
#ifdef ATCODER
SetFastIO();
std::cin >> N;
for (int i = 0 ; i < N ; i++) std::cin >> A[i];
for (int i = 0 ; i < N ; i++) std::cin >> B[i];
std::cin >> K;
for (int i = 0 ; i < K ; i++) {
std::cin >> Q[i].l >> Q[i].r;
}
solve();
#else
std::cout << "Hello World\n";
#endif
}