This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/point_add_rectangle_sum"
#include "../../../Src/Template/IOSetting.hpp"
#include "../../../Src/Algebra/Group/AdditiveGroup.hpp"
#include "../../../Src/DataStructure/FenwickTree/OfflineFenwickTree2D.hpp"
using namespace zawa;
int N, Q, X[100010], Y[100010], W[100010], T[100010], A[100010], B[100010], C[100010], D[100010];
int main() {
SetFastIO();
int N, Q;
std::cin >> N >> Q;
for (int i = 0 ; i < N ; i++) std::cin >> X[i] >> Y[i] >> W[i];
for (int i = 0 ; i < Q ; i++) {
std::cin >> T[i];
if (T[i] == 0) std::cin >> A[i] >> B[i] >> C[i];
else if (T[i] == 1) std::cin >> A[i] >> B[i] >> C[i] >> D[i];
}
OfflineFenwickTree2D<int, AdditiveGroup<long long>> fen{};
for (int i = 0 ; i < N ; i++) fen.operation(X[i], Y[i]);
for (int i = 0 ; i < Q ; i++) if (T[i] == 0) fen.operation(A[i], B[i]);
auto exe = fen.build();
for (int i = 0 ; i < N ; i++) exe.operation(X[i], Y[i], W[i]);
for (int i = 0 ; i < Q ; i++) {
if (T[i] == 0) exe.operation(A[i], B[i], C[i]);
else std::cout << exe.product(A[i], B[i], C[i], D[i]) << '\n';
}
}
#line 1 "Test/LC/point_add_rectangle_sum/OfflineFenwickTree2D.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/point_add_rectangle_sum"
#line 2 "Src/Template/IOSetting.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 4 "Src/Template/IOSetting.hpp"
#include <iostream>
#include <iomanip>
namespace zawa {
void SetFastIO() {
std::cin.tie(nullptr)->sync_with_stdio(false);
}
void SetPrecision(u32 dig) {
std::cout << std::fixed << std::setprecision(dig);
}
} // namespace zawa
#line 2 "Src/Algebra/Group/AdditiveGroup.hpp"
namespace zawa {
template <class T>
class AdditiveGroup {
public:
using Element = T;
static constexpr T identity() noexcept {
return T{};
}
static constexpr T operation(const T& l, const T& r) noexcept {
return l + r;
}
static constexpr T inverse(const T& v) noexcept {
return -v;
}
};
} // namespace zawa
#line 2 "Src/DataStructure/FenwickTree/OfflineFenwickTree2D.hpp"
#line 2 "Src/Algebra/Group/GroupConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/Algebra/Group/GroupConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Inversible = requires {
typename T::Element;
{ T::inverse(std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
template <class T>
concept Group = Monoid<T> and Inversible<T>;
} // namespace Concept
} // namespace zawa
#line 2 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#line 5 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#include <vector>
#include <cassert>
#include <ostream>
#include <functional>
#include <type_traits>
namespace zawa {
template <concepts::Group Group>
class FenwickTree {
public:
using VM = Group;
using V = typename VM::Element;
FenwickTree() = default;
explicit FenwickTree(usize n) : m_n{ n }, m_bitwidth{ std::__lg(n) + 1 }, m_a(n), m_dat(n + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
}
explicit FenwickTree(const std::vector<V>& a) : m_n{ a.size() }, m_bitwidth{ std::__lg(a.size()) + 1 }, m_a(a), m_dat(a.size() + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
for (i32 i{} ; i < static_cast<i32>(m_n) ; i++) {
addDat(i, a[i]);
}
}
inline usize size() const noexcept {
return m_n;
}
// return a[i]
const V& get(usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// return a[i]
const V& operator[](usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// a[i] <- a[i] + v
void operation(usize i, const V& v) {
assert(i < size());
addDat(i, v);
m_a[i] = VM::operation(m_a[i], v);
}
// a[i] <- v
void assign(usize i, const V& v) {
assert(i < size());
addDat(i, VM::operation(VM::inverse(m_a[i]), v));
m_a[i] = v;
}
// return a[0] + a[1] + ... + a[r - 1]
V prefixProduct(usize r) const {
assert(r <= size());
return product(r);
}
// return a[l] + a[l + 1] ... + a[r - 1]
V product(usize l, usize r) const {
assert(l <= r and r <= size());
return VM::operation(VM::inverse(product(l)), product(r));
}
template <class Function>
usize maxRight(usize l, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
assert(l < size());
V sum{ VM::inverse(product(l)) };
usize r{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ r | (1u << bit) };
if (nxt < m_dat.size() and f(VM::operation(sum, m_dat[nxt]))) {
sum = VM::operation(sum, m_dat[nxt]);
r = std::move(nxt);
}
}
assert(l <= r);
return r;
}
template <class Function>
usize minLeft(usize r, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
assert(r <= size());
V sum{ product(r) };
usize l{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ l | (1u << bit) };
if (nxt <= r and not f(VM::operation(VM::inverse(m_dat[nxt]), sum))) {
sum = VM::operation(VM::inverse(m_dat[nxt]), sum);
l = std::move(nxt);
}
}
assert(l <= r);
return l;
}
// debug print
friend std::ostream& operator<<(std::ostream& os, const FenwickTree& ft) {
for (usize i{} ; i <= ft.size() ; i++) {
os << ft.prefixProduct(i) << (i == ft.size() ? "" : " ");
}
return os;
}
private:
usize m_n{};
usize m_bitwidth{};
std::vector<V> m_a, m_dat;
constexpr i32 lsb(i32 x) const noexcept {
return x & -x;
}
// a[i] <- a[i] + v
void addDat(i32 i, const V& v) {
assert(0 <= i and i < static_cast<i32>(m_n));
for ( i++ ; i < static_cast<i32>(m_dat.size()) ; i += lsb(i)) {
m_dat[i] = VM::operation(m_dat[i], v);
}
}
// return a[0] + a[1] + .. + a[i - 1]
V product(i32 i) const {
assert(0 <= i and i <= static_cast<i32>(m_n));
V res{ VM::identity() };
for ( ; i > 0 ; i -= lsb(i)) {
res = VM::operation(res, m_dat[i]);
}
return res;
}
};
} // namespace zawa
#line 2 "Src/Sequence/CompressedSequence.hpp"
#line 4 "Src/Sequence/CompressedSequence.hpp"
#line 6 "Src/Sequence/CompressedSequence.hpp"
#include <algorithm>
#line 8 "Src/Sequence/CompressedSequence.hpp"
#include <iterator>
#include <limits>
namespace zawa {
template <class T>
class CompressedSequence {
public:
static constexpr u32 NotFound = std::numeric_limits<u32>::max();
CompressedSequence() = default;
template <class InputIterator>
CompressedSequence(InputIterator first, InputIterator last) : comped_(first, last), f_{} {
std::sort(comped_.begin(), comped_.end());
comped_.erase(std::unique(comped_.begin(), comped_.end()), comped_.end());
comped_.shrink_to_fit();
f_.reserve(std::distance(first, last));
for (auto it{first} ; it != last ; it++) {
f_.emplace_back(std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), *it)));
}
}
CompressedSequence(const std::vector<T>& A) : CompressedSequence(A.begin(), A.end()) {}
inline usize size() const noexcept {
return comped_.size();
}
u32 operator[](const T& v) const {
return std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), v));
}
u32 upper_bound(const T& v) const {
return std::distance(comped_.begin(), std::upper_bound(comped_.begin(), comped_.end(), v));
}
u32 find(const T& v) const {
u32 i = std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), v));
return i == comped_.size() or comped_[i] != v ? NotFound : i;
}
bool contains(const T& v) const {
u32 i = std::distance(comped_.begin(), std::lower_bound(comped_.begin(), comped_.end(), v));
return i < comped_.size() and comped_[i] == v;
}
u32 at(const T& v) const {
u32 res = find(v);
assert(res != NotFound);
return res;
}
inline u32 map(u32 i) const noexcept {
assert(i < f_.size());
return f_[i];
}
inline T inverse(u32 i) const noexcept {
assert(i < size());
return comped_[i];
}
inline std::vector<T> comped() const noexcept {
return comped_;
}
private:
std::vector<T> comped_;
std::vector<u32> f_;
};
} // namespace zawa
#line 7 "Src/DataStructure/FenwickTree/OfflineFenwickTree2D.hpp"
#line 9 "Src/DataStructure/FenwickTree/OfflineFenwickTree2D.hpp"
#include <utility>
#line 11 "Src/DataStructure/FenwickTree/OfflineFenwickTree2D.hpp"
#include <tuple>
namespace zawa {
namespace internal {
template <class T, concepts::Group G>
class FenwickTree2D {
public:
using V = G::Element;
FenwickTree2D() = default;
FenwickTree2D(const std::vector<T>& px, const std::vector<T>& py)
: xs_{px}, ys_(xs_.size() + 1), fen_(xs_.size() + 1) {
assert(px.size());
assert(px.size() == py.size());
std::vector<std::vector<T>> appy(xs_.size() + 1);
for (usize i = 0 ; i < px.size() ; i++) {
auto x = xs_[px[i]];
for (x++ ; x < appy.size() ; x += lsb(x)) {
appy[x].push_back(py[i]);
}
}
for (usize i = 1 ; i < fen_.size() ; i++) {
ys_[i] = CompressedSequence{appy[i]};
fen_[i] = FenwickTree<G>{ys_[i].size()};
}
}
void operation(const T& x, const T& y, const V& v) {
auto i = xs_.find(x);
assert(i != CompressedSequence<T>::NotFound);
for ( i++ ; i < fen_.size() ; i += lsb(i)) {
auto j = ys_[i].find(y);
assert(j != CompressedSequence<T>::NotFound);
fen_[i].operation(j, v);
}
}
[[nodiscard]] V prefixProduct(const T& x, const T& y) const {
V res = G::identity();
for (u32 i = xs_[x] ; i ; i &= i - 1) {
res = G::operation(res, fen_[i].prefixProduct(ys_[i][y]));
}
return res;
}
[[nodiscard]] V product(const T& lx, const T& ly, const T& rx, const T& ry) const {
assert(lx <= rx);
assert(ly <= ry);
V add = G::operation(prefixProduct(rx, ry), prefixProduct(lx, ly));
V sub = G::operation(prefixProduct(rx, ly), prefixProduct(lx, ry));
return G::operation(add, G::inverse(sub));
}
private:
CompressedSequence<T> xs_;
std::vector<CompressedSequence<T>> ys_;
std::vector<FenwickTree<G>> fen_;
static constexpr i32 lsb(i32 v) {
return v & -v;
}
};
} // namespace internal
template <class T, concepts::Group G>
class OfflineFenwickTree2D {
public:
OfflineFenwickTree2D(usize q = 0) {
xs_.reserve(q);
ys_.reserve(q);
}
void operation(const T& x, const T& y) {
xs_.push_back(x);
ys_.push_back(y);
}
void operation(T&& x, T&& y) {
xs_.push_back(std::move(x));
ys_.push_back(std::move(y));
}
[[nodiscard]] internal::FenwickTree2D<T, G> build() const {
return internal::FenwickTree2D<T, G>{xs_, ys_};
}
private:
std::vector<T> xs_{}, ys_{};
};
} // namespace zawa
#line 6 "Test/LC/point_add_rectangle_sum/OfflineFenwickTree2D.test.cpp"
using namespace zawa;
int N, Q, X[100010], Y[100010], W[100010], T[100010], A[100010], B[100010], C[100010], D[100010];
int main() {
SetFastIO();
int N, Q;
std::cin >> N >> Q;
for (int i = 0 ; i < N ; i++) std::cin >> X[i] >> Y[i] >> W[i];
for (int i = 0 ; i < Q ; i++) {
std::cin >> T[i];
if (T[i] == 0) std::cin >> A[i] >> B[i] >> C[i];
else if (T[i] == 1) std::cin >> A[i] >> B[i] >> C[i] >> D[i];
}
OfflineFenwickTree2D<int, AdditiveGroup<long long>> fen{};
for (int i = 0 ; i < N ; i++) fen.operation(X[i], Y[i]);
for (int i = 0 ; i < Q ; i++) if (T[i] == 0) fen.operation(A[i], B[i]);
auto exe = fen.build();
for (int i = 0 ; i < N ; i++) exe.operation(X[i], Y[i], W[i]);
for (int i = 0 ; i < Q ; i++) {
if (T[i] == 0) exe.operation(A[i], B[i], C[i]);
else std::cout << exe.product(A[i], B[i], C[i], D[i]) << '\n';
}
}