This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_subtree_sum"
#include "../../Src/Template/IOSetting.hpp"
#include "../../Src/Graph/Tree/Sack.hpp"
#include "../../Src/Algebra/Group/AdditiveGroup.hpp"
#include "../../Src/DataStructure/FenwickTree/FenwickTree.hpp"
#include <cassert>
#include <iostream>
#include <utility>
#include <vector>
using namespace zawa;
int main() {
SetFastIO();
int n, q; std::cin >> n >> q;
std::vector dat(n, std::vector<std::pair<int, long long>>{});
for (int i{} ; i < n ; i++) {
long long a; std::cin >> a;
dat[i].emplace_back(0, a);
}
Sack sack(n);
for (int i{1} ; i < n ; i++) {
int p; std::cin >> p;
sack.addEdge(p, i);
}
std::vector<long long> ans;
ans.reserve(q);
int id{};
std::vector query(n, std::vector<std::pair<int, int>>{});
query.reserve(q);
for (int i{1} ; i <= q ; i++) {
int t, v; std::cin >> t >> v;
if (t == 0) {
long long x; std::cin >> x;
dat[v].emplace_back(i, x);
}
else if (t == 1) {
ans.emplace_back(-1LL);
query[v].emplace_back(i, id++);
}
else {
assert(false);
}
}
FenwickTree<AdditiveGroup<long long>> fen(q + 1);
auto add{[&](int v) -> void {
for (auto [time, x] : dat[v]) {
fen.operation(time, x);
}
}};
auto del{[&](int v) -> void {
for (auto [time, x] : dat[v]) {
fen.operation(time, -x);
}
}};
auto answer{[&](int v) -> void {
for (auto [time, i] : query[v]) {
ans[i] = fen.prefixProduct(time + 1);
}
}};
auto reset{[](){}};
sack.execute(0, add, del, answer, reset);
for (auto v : ans) {
std::cout << v << '\n';
}
}
#line 1 "Test/LC/vertex_add_subtree_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_subtree_sum"
#line 2 "Src/Template/IOSetting.hpp"
#line 2 "Src/Template/TypeAlias.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#line 4 "Src/Template/IOSetting.hpp"
#include <iostream>
#include <iomanip>
namespace zawa {
void SetFastIO() {
std::cin.tie(nullptr)->sync_with_stdio(false);
}
void SetPrecision(u32 dig) {
std::cout << std::fixed << std::setprecision(dig);
}
} // namespace zawa
#line 2 "Src/Graph/Tree/Sack.hpp"
#line 4 "Src/Graph/Tree/Sack.hpp"
#include <cassert>
#include <utility>
#include <vector>
namespace zawa {
class Sack {
private:
static constexpr u32 INVALID{static_cast<u32>(-1)};
usize n_{};
std::vector<std::vector<u32>> g_;
std::vector<u32> sz_, euler_, L_, R_;
u32 dfsHLD(u32 v, u32 p) {
sz_[v] = 1;
usize m{g_[v].size()};
usize max{};
if (m > 1u and g_[v][0] == p) std::swap(g_[v][0], g_[v][1]);
for (u32 i{} ; i < m ; i++) if (g_[v][i] != p) {
sz_[v] += dfsHLD(g_[v][i], v);
if (max < sz_[g_[v][i]]) {
max = sz_[g_[v][i]];
if (i) std::swap(g_[v][0], g_[v][i]);
}
}
return sz_[v];
}
void dfsEuler(u32 v, u32 p, u32& t) {
euler_[t] = v;
L_[v] = t++;
for (auto x : g_[v]) if (x != p) {
dfsEuler(x, v, t);
}
R_[v] = t;
}
public:
constexpr usize size() const noexcept {
return n_;
}
Sack() = default;
Sack(u32 n)
: n_{n}, g_(n), sz_(n), euler_(n), L_(n), R_(n) {
assert(n);
g_.shrink_to_fit();
sz_.shrink_to_fit();
euler_.shrink_to_fit();
L_.shrink_to_fit();
R_.shrink_to_fit();
}
void addEdge(u32 u, u32 v) {
assert(u < size());
assert(v < size());
g_[u].emplace_back(v);
g_[v].emplace_back(u);
}
const std::vector<u32>& operator[](u32 v) const noexcept {
assert(v < size());
return g_[v];
}
template <class ADD, class DEL, class QUERY, class RESET>
u32 execute(u32 root, const ADD& add, const DEL& del, const QUERY& query, const RESET& reset) {
dfsHLD(root, INVALID);
u32 t{};
dfsEuler(root, INVALID, t);
auto sack{[&](auto dfs, u32 v, u32 p, bool keep) -> void {
usize m{g_[v].size()};
for (u32 i{1} ; i < m ; i++) if (g_[v][i] != p) {
dfs(dfs, g_[v][i], v, false);
}
if (sz_[v] > 1u) dfs(dfs, g_[v][0], v, true);
if (sz_[v] > 1u) {
for (u32 i{R_[g_[v][0]]} ; i < R_[v] ; i++) {
add(euler_[i]);
}
}
add(v);
query(v);
if (!keep) {
for (u32 i{L_[v]} ; i < R_[v] ; i++) {
del(euler_[i]);
}
reset();
}
}};
sack(sack, root, INVALID, false);
return sz_[root];
}
};
} // namespace zawa
#line 2 "Src/Algebra/Group/AdditiveGroup.hpp"
namespace zawa {
template <class T>
class AdditiveGroup {
public:
using Element = T;
static constexpr T identity() noexcept {
return T{};
}
static constexpr T operation(const T& l, const T& r) noexcept {
return l + r;
}
static constexpr T inverse(const T& v) noexcept {
return -v;
}
};
} // namespace zawa
#line 2 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#line 2 "Src/Algebra/Group/GroupConcept.hpp"
#line 2 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 2 "Src/Algebra/Semigroup/SemigroupConcept.hpp"
#include <concepts>
namespace zawa {
namespace concepts {
template <class T>
concept Semigroup = requires {
typename T::Element;
{ T::operation(std::declval<typename T::Element>(), std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
} // namespace concepts
} // namespace zawa
#line 4 "Src/Algebra/Monoid/MonoidConcept.hpp"
#line 6 "Src/Algebra/Monoid/MonoidConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Identitiable = requires {
typename T::Element;
{ T::identity() } -> std::same_as<typename T::Element>;
};
template <class T>
concept Monoid = Semigroup<T> and Identitiable<T>;
} // namespace
} // namespace zawa
#line 4 "Src/Algebra/Group/GroupConcept.hpp"
namespace zawa {
namespace concepts {
template <class T>
concept Inversible = requires {
typename T::Element;
{ T::inverse(std::declval<typename T::Element>()) } -> std::same_as<typename T::Element>;
};
template <class T>
concept Group = Monoid<T> and Inversible<T>;
} // namespace Concept
} // namespace zawa
#line 5 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#line 8 "Src/DataStructure/FenwickTree/FenwickTree.hpp"
#include <ostream>
#include <functional>
#include <type_traits>
namespace zawa {
template <concepts::Group Group>
class FenwickTree {
public:
using VM = Group;
using V = typename VM::Element;
FenwickTree() = default;
explicit FenwickTree(usize n) : m_n{ n }, m_bitwidth{ std::__lg(n) + 1 }, m_a(n), m_dat(n + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
}
explicit FenwickTree(const std::vector<V>& a) : m_n{ a.size() }, m_bitwidth{ std::__lg(a.size()) + 1 }, m_a(a), m_dat(a.size() + 1, VM::identity()) {
m_dat.shrink_to_fit();
m_a.shrink_to_fit();
for (i32 i{} ; i < static_cast<i32>(m_n) ; i++) {
addDat(i, a[i]);
}
}
inline usize size() const noexcept {
return m_n;
}
// return a[i]
const V& get(usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// return a[i]
const V& operator[](usize i) const noexcept {
assert(i < size());
return m_a[i];
}
// a[i] <- a[i] + v
void operation(usize i, const V& v) {
assert(i < size());
addDat(i, v);
m_a[i] = VM::operation(m_a[i], v);
}
// a[i] <- v
void assign(usize i, const V& v) {
assert(i < size());
addDat(i, VM::operation(VM::inverse(m_a[i]), v));
m_a[i] = v;
}
// return a[0] + a[1] + ... + a[r - 1]
V prefixProduct(usize r) const {
assert(r <= size());
return product(r);
}
// return a[l] + a[l + 1] ... + a[r - 1]
V product(usize l, usize r) const {
assert(l <= r and r <= size());
return VM::operation(VM::inverse(product(l)), product(r));
}
template <class Function>
usize maxRight(usize l, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "maxRight's argument f must be function bool(T)");
assert(l < size());
V sum{ VM::inverse(product(l)) };
usize r{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ r | (1u << bit) };
if (nxt < m_dat.size() and f(VM::operation(sum, m_dat[nxt]))) {
sum = VM::operation(sum, m_dat[nxt]);
r = std::move(nxt);
}
}
assert(l <= r);
return r;
}
template <class Function>
usize minLeft(usize r, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(V)>>, "minLeft's argument f must be function bool(T)");
assert(r <= size());
V sum{ product(r) };
usize l{};
for (usize bit{ m_bitwidth } ; bit ; ) {
bit--;
usize nxt{ l | (1u << bit) };
if (nxt <= r and not f(VM::operation(VM::inverse(m_dat[nxt]), sum))) {
sum = VM::operation(VM::inverse(m_dat[nxt]), sum);
l = std::move(nxt);
}
}
assert(l <= r);
return l;
}
// debug print
friend std::ostream& operator<<(std::ostream& os, const FenwickTree& ft) {
for (usize i{} ; i <= ft.size() ; i++) {
os << ft.prefixProduct(i) << (i == ft.size() ? "" : " ");
}
return os;
}
private:
usize m_n{};
usize m_bitwidth{};
std::vector<V> m_a, m_dat;
constexpr i32 lsb(i32 x) const noexcept {
return x & -x;
}
// a[i] <- a[i] + v
void addDat(i32 i, const V& v) {
assert(0 <= i and i < static_cast<i32>(m_n));
for ( i++ ; i < static_cast<i32>(m_dat.size()) ; i += lsb(i)) {
m_dat[i] = VM::operation(m_dat[i], v);
}
}
// return a[0] + a[1] + .. + a[i - 1]
V product(i32 i) const {
assert(0 <= i and i <= static_cast<i32>(m_n));
V res{ VM::identity() };
for ( ; i > 0 ; i -= lsb(i)) {
res = VM::operation(res, m_dat[i]);
}
return res;
}
};
} // namespace zawa
#line 7 "Test/LC/vertex_add_subtree_sum.test.cpp"
#line 12 "Test/LC/vertex_add_subtree_sum.test.cpp"
using namespace zawa;
int main() {
SetFastIO();
int n, q; std::cin >> n >> q;
std::vector dat(n, std::vector<std::pair<int, long long>>{});
for (int i{} ; i < n ; i++) {
long long a; std::cin >> a;
dat[i].emplace_back(0, a);
}
Sack sack(n);
for (int i{1} ; i < n ; i++) {
int p; std::cin >> p;
sack.addEdge(p, i);
}
std::vector<long long> ans;
ans.reserve(q);
int id{};
std::vector query(n, std::vector<std::pair<int, int>>{});
query.reserve(q);
for (int i{1} ; i <= q ; i++) {
int t, v; std::cin >> t >> v;
if (t == 0) {
long long x; std::cin >> x;
dat[v].emplace_back(i, x);
}
else if (t == 1) {
ans.emplace_back(-1LL);
query[v].emplace_back(i, id++);
}
else {
assert(false);
}
}
FenwickTree<AdditiveGroup<long long>> fen(q + 1);
auto add{[&](int v) -> void {
for (auto [time, x] : dat[v]) {
fen.operation(time, x);
}
}};
auto del{[&](int v) -> void {
for (auto [time, x] : dat[v]) {
fen.operation(time, -x);
}
}};
auto answer{[&](int v) -> void {
for (auto [time, i] : query[v]) {
ans[i] = fen.prefixProduct(time + 1);
}
}};
auto reset{[](){}};
sack.execute(0, add, del, answer, reset);
for (auto v : ans) {
std::cout << v << '\n';
}
}